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ABSTRACT
Due to its training stability and strong expression, the diffusion

model has attracted considerable attention in offline reinforcement

learning. However, several challenges have also come with it: 1) The

demand for a large number of diffusion steps makes the diffusion-

model-based methods time inefficient and limits their applications

in real-time control; 2) How to achieve policy improvement with

accurate guidance for diffusion model-based policy is still an open

problem. Inspired by the consistency model, we propose a novel

time-efficiency method named Consistency Policy with Q-Learning

(CPQL), which derives action from noise by a single step. By estab-

lishing a mapping from the reverse diffusion trajectories to the de-

sired policy, we simultaneously address the issues of time efficiency

and inaccurate guidance when updating diffusion model-based pol-

icy with the learned Q-function. We demonstrate that CPQL can

achieve policy improvement with accurate guidance for offline re-

inforcement learning, and can be seamlessly extended for online

RL tasks. Experimental results indicate that CPQL achieves new

state-of-the-art performance on 11 offline and 21 online tasks, signif-

icantly improving inference speed by nearly 45 times compared to

Diffusion-QL. Code is available at https://github.com/cccedric/cpql.
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1 INTRODUCTION
Offline reinforcement learning (RL) offers a promising approach

for learning policies from pre-collected datasets to solve sequential

decision-making tasks, but it requires conservative behaviors to

alleviate value overestimation [11, 28]. The policy representation

needs to be powerful enough to cover the diverse behaviors, thereby

alleviating the value function overestimation caused by querying
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out-of-distribution (OOD) actions [14, 29]. Traditional unimodal

policy struggles to model multi-modal behaviors in datasets, leading

to the failure of policy constraints [7, 36, 48].

The diffusion model [21] showcases remarkable attributes in

terms of high training stability and its ability to provide strong

distributional representations, achieving impressive outcomes in

the generation of high-quality image samples endowed with diverse

features. In light of the imperative demand for strong expression

ability, the diffusion model is introduced to offline RL for imitating

behaviors [8, 30, 47], trajectories modeling [3, 22, 39], and building

expected policy [33, 48, 53]. Since the diffusion model can cover

diverse behaviors [52] and enhance the KL divergence constraint

between the behavior policy and the expected policy [48], these

methods achieve impressive performance by alleviating value over-

estimation with reducing OOD actions.

However, the adoption of the diffusion model also presents two

prominent challenges. Firstly, the training and inference of the

diffusion-model-based policy is time inefficient. This is because the

inherent sampling process of the diffusion model relies on a Markov

chain for a large number of steps (e.g., 1,000 steps) to capture in-

tricate dependencies in the data. This inadequacy translates into

protracted training durations and sluggish real-time inference capa-

bilities. The ramification of this time inefficiency severely hinders

practical utility in real-time decision-making domains such as robot

control. Secondly, it is hard to improve the parameterized policy by

diffusion model accurately under the actor-critic framework. Due to

the absence of data from the optimal behavior, updating diffusion

model-based policy needs additional guidance to achieve better

behavior. Though the Q-value is employed to guide the reverse

diffusion process [23, 48], it is theoretically impossible to access the

desired policy since the Q-value is inaccurate for intermediate dif-

fusion actions. How to achieve accurate guidance for the expected

policy is still an open problem [33].

Instead of a large number of reverse diffusion steps, the consis-

tency model [42] is based on probability flow ordinary differential

equation (ODE) and achieves the one-step generation process. In-

spired by the consistencymodel, we propose a novel approach called

Consistency Policywith Q-learning (CPQL) that can generate action

directly from noise in a single step. Due to this one-step generation,

CPQL significantly outperforms previous diffusion-model-based

methods in training and inference speed. By establishing a map-

ping from the reverse diffusion trajectories to the desired policy,

CPQL avoids explicit access to inaccurate guidance functions in

multi-step diffusion processes, and we theoretically prove that it can

achieve policy improvement with accurate guidance for offline RL.
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Moreover, with the inherent sampling randomness of the stochastic

generation process, CPQL can be seamlessly extended for online

RL tasks without relying on additional exploration strategies.

In summary, our contribution involves threemain aspects. Firstly,

we propose a novel time-efficient method named CPQL and improve

training and inference speeds by nearly 15x and 45x compared to

Diffusion-QL [48], while also improving the performance. Secondly,

we conduct a theoretical analysis to demonstrate that the CPQL is

capable of achieving policy improvement with accurate guidance

and propose an empirical loss to replace consistency loss for sta-

bilizing policy training. Finally, CPQL can seamlessly extend to

online RL tasks. As experimented, CPQL achieves state-of-the-art

(SOTA) performance on 11 offline and 21 online tasks.

2 RELATEDWORK
Offline RL. The main problem offline RL faces is the overesti-

mation of the value function caused by accessing OOD actions.

The previous offline RL methods broadly are categorized as policy

constraints [13, 14, 49], value function regularization [27, 35], or in

sample learning [25, 34, 50, 51]. Our work belongs to policy con-

straints. Different from the previous method based on unimodal

distribution, we propose a sampling efficient policy based on the

consistency model, which is better suited to constrain the policy to

meet the multi-modal characteristics of the offline dataset.

Diffusion Models for Imitation Learning. When expert trajectories

are accessible, imitation learning is a powerful method for building

the expected policy. The diffusion model is employed to tackle di-

verse behaviors in the expert dataset [9, 30, 36]. When the reward

for the typical task is sparse or inaccessible, goal-conditioned imita-

tion learning is an alternative solution, where the diffusion model is

used to build the goal-conditioned policy [40]. Moreover, since the

diffusion model has a strong text-to-image ability, it is also used to

generate the behavior goal with the language as the input [16, 24].

Diffusion Models for RL. The diffusion model has been widely

used in RL, especially offline RL tasks. The diffusion model can

be used to model trajectories [3, 22], build the world model [6],

augment the dataset [32] and estimate the action distribution con-

ditioned on the state. This distribution can be either a behavioral

policy distribution in the dataset [7, 20, 36] or an expected policy

distribution [23, 33, 48]. Difffusion-QL [48] and EDP [23] are similar

to our work. There are several differences between our work and

these methods. First and foremost, they did not clearly point out

what distribution the diffusion model fits, while our work starts

with modeling the solution of the constrained policy search prob-

lem and proposes the consistency policy. Second, these methods are

damaged by inaccurate guiding during the reverse diffusion process.

Finally, a large number of reverse diffusion steps is necessary for

these methods and harm real-time for robot control. QGPO [33]

also focuses on solving the problem of diffusion model fitting the

optimal solution. Our work is different in that we solve this prob-

lem from the perspective of establishing ODE trajectories mapping

rather than the perspective of accurate guidance function during

the diffusion process. In addition to offline tasks, DIPO [52] is first

proposed to use the diffusion model to solve online RL problems.

This work proposes the action gradient to update the actions in the

replay buffer and uses the diffusion model to fit the updated action

distribution. Our approach directly updates the consistency policy

using the gradient of the value function.

3 DIFFUSION POLICY FOR OFFLINE RL
3.1 Offline RL
Adecision-making problem in RL is usually represented by aMarkov

Decision Process (MDP), defined as a tuple: {𝑆,𝐴, 𝑃, 𝑟, 𝛾}. 𝑆 and 𝐴
represent the state and action spaces, respectively. 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
represents the transition probability from state 𝑠𝑡 to next state

𝑠𝑡+1 after taking the action 𝑎𝑡 , and 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) represents the
corresponding reward. 𝛾 is the discount factor. A policy 𝜋 (𝑎𝑡 |𝑠𝑡 )
describes how an agent interacts with the environment. We use

subscripts 𝑡 ∈ {1, · · · ,𝑇 } to denote trajectory timesteps.

Policy Constraint for Offline Learning. Without interactions with

the environment, agents under the offline RL scenario learn an

expected policy entirely from a previously collected static dataset

of transitions denoted as D𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)} by a behav-

ior policy 𝜇 (𝑎𝑡 |𝑠𝑡 ). In order to alleviate the value overestimation

caused by visiting OOD actions [26], offline RL methods [29] often

constrain the learned policy to the behavior policy 𝜇. The goal is to

find the desired policy around behavior policy that can achieve the

following objective:

J (𝜋) = E𝑠𝑡∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒
[E𝑎𝑡∼𝜋 ( · |𝑠𝑡 ) [𝑄𝜐 (𝑠𝑡 , 𝑎𝑡 )]
−𝜆𝐷𝐾𝐿 (𝜋 (·|𝑠𝑡 ) | |𝜇 (·|𝑠𝑡 ))]

(1)

where𝑄𝜐 (𝑠𝑡 , 𝑎𝑡 ) is a learned Q-function of the current policy 𝜋 , and
𝜆 determines the relative importance of the KL divergence against

the value function, controlling the balance between exploitation

and policy constraints.

Policy Improvement with Constraint Policy Search. In the follow-

ing sections, we omit subscripts 𝑡 to simplify the demonstrations if

they are unnecessary. With the optimization objective claimed in

Eq. (1), we have the closed form of the solution 𝜋∗ [7, 37, 38]:

𝜋∗ (𝑎 |𝑠) ∝ 𝜇 (𝑎 |𝑠) exp( 1
𝜆
𝑄𝜐 (𝑠, 𝑎)) (2)

The aforementioned solution is frequently employed to tackle

offline RL problems. These methods typically explicitly estimate

the probability distribution of the behavioral policy to compute the

analytical form of Eq. (2). However, estimating the probability dis-

tribution of the behavioral policy becomes exceedingly challenging

when the policy is complex. Therefore, diffusion models are often

utilized to model this behavioral policy, which is straightforward

due to the availability of a dataset for the behavioral policy. Conse-

quently, the aforementioned diffusion model-based approaches are

incapable of estimating the analytical form of Eq. (2), necessitating

additional importance sampling for the computation of the policy

corresponding to Eq. (2) [7, 17, 20]. Furthermore, in these methods,

it is usually possible to only estimate the Q-value of the behavioral

policy; thus, such methods are also referred to as one-step boot-

strapping. In this paper, we will employ a diffusion model to directly

model 𝜋∗, thereby avoiding reliance on Q-value and resampling

techniques during the inference process, and achieving improved

performance by implementing multi-step bootstrapping.
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3.2 Diffusion Policy
In this section, we define the expected policy of Eq.(2) as diffusion

policy and describe how to use the diffusionmodel to build it. Before

formally introducing this process, we first declare that there are

two different types of timesteps in the following sections. Rather

than using subscripts 𝑡 denoting the trajectory timesteps, we use

superscripts 𝑘 ∈ [0, 𝐾] to denote the diffusion timesteps.

The diffusionmodel starts by diffusing 𝑝𝑑𝑎𝑡𝑎 (𝑎) with a stochastic
differential equation (SDE):

𝑑𝑎𝑘 = 𝜇 (𝑎𝑘 , 𝑘)𝑑𝑘 + 𝜎 (𝑘)𝑑𝑤𝑘 (3)

where 𝜇 (·, ·) and 𝜎 (·) are the drift and diffusion coefficients respec-

tively, and {𝑤𝑘 }𝑘∈[0,𝐾 ] denotes the standard Brownian motion.

Starting from 𝑥𝐾 , the diffusion model aims to recover the original

data 𝑥0 by solving a reverse process from𝐾 to 0with the Probability

Flow (PF) ODE [43]:

𝑑𝑎𝑘 = [𝜇 (𝑎𝑘 , 𝑘) − 1

2

𝜎 (𝑘)2∇ log 𝑝𝑘 (𝑎𝑘 )]𝑑𝑘 (4)

where the only unknown term is the score function ∇ log𝑝𝑘 (𝑎𝑘 )
at each timestep. Thus, the diffusion model trains a neural network

parameterized by 𝜙 to estimate the score function: 𝑠𝜙 (𝑎𝑘 , 𝑘) ≈
∇ log𝑝𝑘 (𝑎𝑘 ). By setting 𝜇 (𝑎𝑘 , 𝑘) = 0 and 𝜎 (𝑘) =

√
2, we can obtain

an empirical estimate of the PF ODE:

𝑑𝑎𝑘

𝑑𝑘
= −𝑘𝑠𝜙 (𝑎𝑘 , 𝑘) (5)

When the diffusion model is used to represent the policy directly,

the challenge lies in estimating the score function because it’s im-

possible to obtain data from the optimal policy straightforwardly,

making the estimation intractable. Nevertheless, we can use the dif-

fusion process through reference policy with guidance to estimate

the score function [10]. With Eq. (2), we can derive the following

score function with guidance for the solution of Eq. (2):

∇ log𝜋∗ (𝑎𝑘 |𝑠) = ∇ log 𝜇 (𝑎𝑘 |𝑠) + 1

𝜆
∇𝑄𝜐 (𝑠, 𝑎𝑘 ) (6)

Note that we have to calculate the Q-function for each diffusion

timestep. However, we only have the learned Q-value at diffusion

timestep 0, and it is challenging to accurately estimate the Q-value

for each diffusion step. Consequently, achieving the correct policy

through accurate diffusion guidance is nontrivial [33].

4 CONSISTENCY POLICY WITH Q-LEARNING
4.1 Consistency Policy
The previous section notes that modeling the solution using the

classifier-guided diffusion process is quite challenging due to the

inaccuracy of guidance. In this section, we will show how the

consistency policy can avoid this problem and achieve policy im-

provement with accurate guidance. Drawing inspiration from the

consistency model, we could directly map the ODE trajectories to

the policy in the inverse diffusion process. Following the consis-

tency model [42], we define the consistency policy:

𝜋𝜃 (𝑎 |𝑠) ≡ 𝑓𝜃 (𝑎𝑘 , 𝑘 |𝑠)

= 𝑐𝑠𝑘𝑖𝑝 (𝑘)𝑎𝑘 + 𝑐𝑜𝑢𝑡 (𝑘)𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠)
(7)

Figure 1: Given an ODE that smoothly converts from actions
of the reference policy (e.g., 𝑥0, 𝑦0 ∈ 𝐴) to Gaussian noises, the
consistency policy 𝑓𝜃 maps any point (e.g., 𝑥𝑘 , 𝑥𝑘

′
, 𝑦𝑘

′′
, 𝑦𝐾 ) on

the PF ODE trajectory to the desired actions (e.g., 𝑥𝜖 , 𝑦𝜖 ). Since
consistency policy generates the actions from the noise by
one step, it reduces an enormous amount of time for policy
training and inference.

where 𝑎𝑘 ∼ N(0, 𝑘𝐼 ). The 𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠) is a trainable network that

takes the state 𝑠𝑡 as an condition and outputs an action of the same

dimensionality as the input 𝑎𝑘 . 𝑐𝑠𝑘𝑖𝑝 and 𝑐𝑜𝑢𝑡 are differentiable

functions such that 𝑐𝑠𝑘𝑖𝑝 (𝜖) = 1, and 𝑐𝑜𝑢𝑡 (𝜖) = 0 to ensure the

𝑓𝜃 (𝑎𝑘 , 𝑘 |𝑠) is differentiable at 𝑘 = 𝜖 if 𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠) is differentiable,
which is critical for training process described later. We stop solving

the reverse process at 𝑘 = 𝜖 , where 𝜖 is a small positive constant

to avoid numerical instability. The sampled action 𝑎𝜖 ∼ 𝜋𝜃 (𝑎 |𝑠)
of the consistency policy is used for controlling the agent. The

relationship between the forward diffusion process represented by

the ODE trajectories and consistency policy is shown in Figure 1.

4.2 Training Loss for Consistency Policy
Training consistency policy with consistency loss from the consis-

tency model is nontrivial. Let us begin by assuming the presence

of a pre-trained diffusion model with a score function, denoted as

𝑠𝜙∗ (𝑎𝑘 , 𝑘) with parameter 𝜙∗, representing the optimal diffusion-

model-based policy. Following the consistency model, we can use

a consistency policy to distill the inverse diffusion process. How-

ever, since we cannot access the data from the optimal policy, the

assumptive pre-trained diffusion model is unavailable.

To tackle the above problem, we propose CPQL, which estab-

lishes a relationship between the above distillation process and the

consistency training for reference policy with the Q-function based

on Theorem 1, with full proof in Appendix A.1. In order to deter-

mine the solution trajectory of action {𝑎𝑘𝑡 }𝑘∈[𝜖,𝐾 ] , we discretize
the diffusion horizon [𝜖, 𝐾] into𝑀 sub-intervals with boundaries

𝑘1 = 𝜖 < 𝑘2 < · · · < 𝑘𝑀 = 𝐾 . Note that here we use subscripts

𝑚 ∈ {1, · · · , 𝑀} to denote time sub-intervals. To learn the consis-

tency policy, we minimize the objective with stochastic gradient

descent on the parameter 𝜃 , while updating 𝜃− with exponential

moving average.

Theorem 1. Let Δ𝑘 = max𝑚∈[1,𝑀−1] {|𝑘𝑚+1−𝑘𝑚 |}. We have the
assumptions: 1) Distance function 𝑑 , value function 𝑄 and 𝑓𝜃− are all
twice continuously differentiable with bounded second derivatives; 2)
There is a pre-trained score function representing the desired policy:

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

337



∀𝑘 ∈ [𝜖, 𝐾] : 𝑠𝜙∗ (𝑎𝑘 , 𝑘) = ∇ log𝑝𝑘 (𝑎𝑘 ), which cannot be accessed;
3) 𝑓𝜃 satisfies the Lipschitz condition: there exists 𝐿 > 0 such that
for all 𝑘 ∈ [𝜖, 𝐾] and 𝑥,𝑦 ∈ 𝐴, we have | |𝑓𝜃 (𝑥, 𝑘) − 𝑓𝜃 (𝑦, 𝑘) | |2 ≤
𝐿 | |𝑥 − 𝑦 | |2. The distillation loss for the distillation process of training
the consistency policy is defined as:

𝐿𝐶𝐷 (𝜃, 𝜃− ;𝜙∗) = E[𝑑 (𝑓𝜃 (𝑎 + 𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠), 𝑓𝜃− (𝑎𝑘𝑚𝜙∗ , 𝑘𝑚 |𝑠))]
(8)

where 𝑎𝑘𝑚
𝜙∗

is calculated with Euler solver and the optimal score func-

tion 𝑠𝜙∗ (𝑎𝑘 , 𝑘). The training loss for training the consistency policy is
sufficient to replace the distillation loss:

𝐿(𝜃, 𝜃−) = 𝛼𝐿𝐶𝑇 (𝜃, 𝜃−) − 𝛽E[𝑄 (𝑠, 𝑎𝜖 )] + 𝑜 (Δ𝑘) (9)

where the consistency loss for consistency training is defined as:

𝐿𝐶𝑇 (𝜃, 𝜃−) = E[𝑑 (𝑓𝜃 (𝑎 + 𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠), 𝑓𝜃− (𝑎 + 𝑘𝑚𝑧, 𝑘𝑚 |𝑠)]
(10)

𝛼 = E[1 +𝑄 (𝑠, 𝑎)
𝑘2
𝑚+1

𝜆(𝑎𝑘𝑚+1 − 𝑎)2
]

𝛽 = E[𝑑 (𝑓𝜃 (𝑎 + 𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠), 𝑓𝜃− (𝑎 + 𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠))

∗
𝑘2
𝑚+1

𝜆(𝑎𝑘𝑚+1 − 𝑎)2
)]

(11)

The expectation is taken with respect to (𝑠, 𝑎) ∼ D𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 , 𝑎𝜖 ∼
𝜋𝜃 ,𝑚 ∼ U[1, 𝑀 − 1], 𝑧 ∼ N(0, 𝐼 ), and 𝑑 stands for the Euclidean

distance 𝑑 (𝑥,𝑦) = | |𝑥 − 𝑦 | |2
2
. Theorem 1 demonstrates that we can

improve policy by distilling the assumed optimal score function

using behavioral policy data and the Q-function. Eq. (9) provides

the loss function for training the consistency policy. 𝐿𝐶𝑇 (𝜃, 𝜃−)
represents the consistent training loss regarding the behavior pol-

icy. Unlike consistency models, this part includes 𝛼 related to the

Q-value as the weight to improve the probability of good actions

sampled by the policy. The second term is the Q-value of the esti-

mated action. Its purpose is to guide the policy to generate higher

Q-value, leading to better performance. As seen from the above

loss function, estimating the Q-value in the intermediate diffusion

steps is no longer necessary, which avoids inaccurate guidance.

As experienced, we find that the loss function mentioned above

may cause instability during the training process, resulting in the

deterioration of policy performance. We speculate that the reason

may be that consistency loss needs to sufficiently sample the dif-

fusion time interval to achieve consistency with the original data.

However, in practice, the limited sampling steps and the random-

ness of sampling may not meet this condition. In order to achieve

more stable training, we propose a simpler loss function called

reconstruction loss:

𝐿𝑅𝐶 (𝜃, 𝜃−) = E[𝑑 (𝑓𝜃 (𝑎 + 𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠), 𝑎)] (12)

This loss is intuitive. It drives the consistency policy to directly

recover the original action, rather than indirectly achieving the re-

covery by maintaining consistency. We prove that this loss function

has the same convergence objective with 𝐿𝐶𝑇 (𝜃, 𝜃−) in Appendix

A.2. Therefore, we have the final optimization objective:

𝐿(𝜃, 𝜃−) =𝛼𝐿𝑅𝐶 (𝜃, 𝜃−)

− 𝜂

E(𝑠,𝑎)∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒
[𝑄 (𝑠, 𝑎)] E𝑠∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒 ,𝑎

𝜖∼𝜋𝜃 [𝑄 (𝑠, 𝑎
𝜖 )]

(13)

Algorithm 1 CPQL and CPIQL for Offline RL Tasks

Initialize the policy network 𝜋𝜃 , critic networks𝑉𝜓 ,𝑄𝜐1 and𝑄𝜐2 ,

and target networks 𝜋𝜃− , 𝑄𝜐−
1

and 𝑄𝜐−
2

for each iteration do
Sample transition batch 𝐵 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)} ∼ D𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒
# Q-learning

Update 𝑄𝜐𝑖 by Eq. (14) (CPQL) or Update 𝑉𝜓 , 𝑄𝜐𝑖 by Eq. (15)

and Eq. (16) (CPIQL)

# Consistency policy learning

Sample 𝑎𝜖𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) by Eq. (7)

Update 𝜋𝜃 by minimizing Eq. (13)

# Update target networks

𝜃− = 𝜌𝜃− + (1 − 𝜌)𝜃
𝜐−
𝑖
= 𝜌𝜐−

𝑖
+ (1 − 𝜌)𝜐𝑖 for 𝑖 ∈ {1, 2}

end for

where
𝜂

E(𝑠,𝑎)∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒 [𝑄 (𝑠,𝑎) ]
corresponds to the 𝛽 in Eq. (11). In

practice, we set 𝛼 as an adjustable parameter ignoring the𝑄 value in

𝛼 , and𝜂 is another adjustable parameter. The (𝛼, 𝜂) are set according
to the characteristics of different domains.

4.3 Policy Evaluation
For policy evaluation, the objective function uses the KL divergence

to constrain the learned policy from accessing the OOD action. The

Q-function of CPQL is learned in a conventional way, with the

Bellman operator [31] and the double Q-learning trick [46]. We

build two Q-networks 𝑄𝜐1 and 𝑄𝜐2 and target networks 𝑄𝜐−
1

and

𝑄𝜐−
2

and minimizing the objective:

𝐿𝑄 (𝜐𝑖 ) =E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 )∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒 ,𝑎
𝜖
𝑡+1∼𝜋𝜃 [| |𝑟 (𝑠𝑡 , 𝑎𝑡 )

+ 𝛾 min

𝑗=1,2
𝑄𝜐−

𝑗
(𝑠𝑡+1, 𝑎𝜖𝑡+1) −𝑄𝜐𝑖 (𝑠𝑡 , 𝑎𝑡 ) | |

2] (14)

To evaluate the effectiveness of the consistency policy in con-

straining the sampling of OOD actions that cause overestimation

of the Q-value, we further propose Consistency Policy Implicit

Q-Learning (CPIQL) as a comparison. Using implicit Q-learning

[25] can better restrict accessing the OOD action. Meanwhile, im-

plicit Q-learning avoids sampling the action at the next timestep

when calculating the critic loss function, reducing the time needed

for critic training. CPIQL builds the value-network 𝑉𝜓 in addition.

Typically, the value function 𝑄 and 𝑉 are given by:

𝐿𝑉 (𝜓 ) = E(𝑠𝑡 ,𝑎𝑡 )∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒
[𝐿𝜏

2
(min

𝑗=1,2
𝑄𝜐−

𝑗
(𝑠𝑡 , 𝑎𝑡 ) −𝑉𝜓 (𝑠𝑡 ))] (15)

𝐿𝑄 (𝜐𝑖 ) = E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 )∼D𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒
[| |𝑟 (𝑠, 𝑎) + 𝛾𝑉𝜓 (𝑠𝑡+1)−𝑄𝜐𝑖 (𝑠𝑡 , 𝑎𝑡 ) | |22],

𝑓 𝑜𝑟 𝑖 = 1, 2

(16)

where 𝐿𝜏
2
(𝑢) = |𝜏 − 1(𝑢 < 0) |𝑢2 is expectile regression function.

In contrast to other RL methods based on the diffusion model,

the consistency policy affords the distinct advantage of facilitating

one-step sampling. This feature significantly reduces the time costs

associated with both the sampling process and the computation

of Q-function gradient back-propagation, resulting in better time

efficiency. We summarize the complete algorithm procedure of

CPQL and CPIQL in Algorithm 1 for offline tasks.
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Table 1: The performance of CPQL and CPIQL and SOTA baselines on D4RL Locomotion and Adroit tasks. For Diffusion-QL,
CPQL, and CPIQL, we here provide the "best" scores, representing the best performance during training. More experimental
results, including the final performance and the standard deviation of each task, are provided in Appendix D.

Dataset TD3+BC IQL SfBC IDQL Diffusion-QL EDP QGPO Diffuser DD CPIQL CPQL

halfcheetah-medium-v2 48.3 47.4 45.9 49.7 51.1 52.1 54.1 42.8 49.1 55.3 57.9
hopper-medium-v2 59.3 66.3 57.1 63.1 90.5 81.9 98.0 74.3 79.3 101.5 102.1
walker2d-medium-v2 83.7 78.3 77.9 80.2 87.0 86.9 86.0 79.6 82.5 88.4 90.5
halfcheetah-medium-replay-v2 44.6 44.2 37.1 45.1 47.8 49.4 47.6 37.7 39.3 49.8 48.1

hopper-medium-replay-v2 60.9 94.7 86.2 82.4 101.3 101.0 96.9 93.6 100.0 101.7 101.7
walker2d-medium-replay-v2 81.8 73.9 65.1 79.8 95.5 94.9 84.4 70.6 79.0 95.0 94.4

halfcheetah-medium-expert-v2 90.7 86.7 92.6 94.4 96.8 95.5 93.5 88.9 90.6 90.2 98.8
hopper-medium-expert-v2 98.0 91.5 108.6 105.3 111.1 97.4 108.0 103.3 111.8 113.4 114.2
walker2d-medium-expert-v2 110.1 109.6 109.8 111.6 110.1 110.2 110.7 106.9 108.8 112.3 111.5

Average 75.3 77.0 75.6 79.1 87.9 85.5 86.5 77.5 81.8 89.7 91.0

pen-human-v1 0.6 71.5 - - 72.8 48.2 - - - 58.2 89.3
pen-cloned-v1 -2.5 37.3 - - 57.3 15.9 - - - 77.4 83.3
Average -1.0 54.4 - - 65.1 32.1 - - - 67.8 86.3

4.4 Extension for Online RL
Previous sessions have demonstrated how CPQL learns the policy

of Eq. (2) to solve offline RL problems. In this session, we will

demonstrate that the CPQL method can seamlessly extend to online

RL problems. We define the objective for online tasks as:

J (𝜋) = E𝑠𝑡∼D𝑟
[E𝑎𝑡∼𝜋 ( · |𝑠𝑡 ) [𝑄𝜐 (𝑠𝑡 , 𝑎𝑡 )]
−𝜆𝐷𝐾𝐿 (𝜋 (·|𝑠𝑡 ) | |𝜋𝑟 (·|𝑠𝑡 ))]

(17)

where D𝑟 refers to the replay buffer, and 𝜋𝑟 is the policy for col-

lecting the data in D𝑟 . When 𝜋𝑟 is the uniform policy, the above

problem is equivalent to maximum entropy RL [18]. It is readily

observable that the objective function for online RL tasks bears

a striking resemblance to Eq. (1), and Eq. (2) can also serve as a

closed-form solution for Eq. (17) withD𝑟 replacingD𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 and 𝜋𝑟
replacing 𝜇. Therefore, CPQL can be seamlessly extended to online

tasks. In maximum entropy RL methods, careful tuning of 𝜆 is nec-

essary to strike a balance between exploration and exploitation. In

CPQL, this situation is alleviated. Firstly, our consistency policy is

inherently stochastic, and we find in experiments that this inherent

randomness allows for sufficient exploration of the environment

without the need for additional exploration strategies. Secondly,

the data collected by this policy incorporates this stochasticity and

makes the consistency policy maintain this randomness through Eq.

(13). Lastly, as the policy asymptotically converges, the proportion

of good samples in the data increases, reducing the randomness in

the replay buffer, consequently decreasing the policy’s randomness

and achieving policy convergence. It is worth noting that the afore-

mentioned process does not require manual adjustment of 𝜆; rather,

it is implicit in the CPQL policy iteration. Furthermore, unlike pre-

vious maximum entropy reinforcement learning methods, we find

that CPQL’s performance is not sensitive to 𝜆 for different tasks,

greatly alleviating the tuning complexity associated with maximum

entropy reinforcement learning. We summarize the complete al-

gorithm procedure of CPQL in Algorithm 2 for online tasks, and

we also provide an illustrative description of how CPQL works for

both offline and online RL tasks in Appendix B.

Algorithm 2 CPQL for Online RL Tasks

Initialize the policy network 𝜋𝜃 , critic networks 𝑄𝜐1 and 𝑄𝜐2 ,

and target networks 𝜋𝜃− , 𝑄𝜐−
1

and 𝑄𝜐−
2

Initialize the dataset D𝑟 ← ∅
# Warm up

for 𝑖 ∈ 0, · · · ,𝑊 do
Generate 𝑎𝜖𝑡 by Eq. (7) with 𝑠𝑡
Play 𝑎𝜖𝑡 and get 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝜖𝑡 )
D𝑟 ← D𝑟 ∪ {𝑠𝑡 , 𝑎𝜖𝑡 , 𝑟𝑡 , 𝑠𝑡+1}

end for
for each iteration do

# Update the dataset

Sample 𝑎𝜖𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) by Eq. (7) with 𝑠𝑡
Play 𝑎𝜖𝑡 and get 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝜖𝑡 )
D𝑟 ← D𝑟 ∪ {𝑠𝑡 , 𝑎𝜖𝑡 , 𝑟𝑡 , 𝑠𝑡+1}
# Policy training

Sample transition batch 𝐵 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)} ∼ D𝑟
# Q-learning

Update 𝑄𝜐𝑖 by Eq. (14)

# Consistency policy learning

Update policy by minimizing Eq. (13)

# Update target networks

𝜃− = 𝜌𝜃− + (1 − 𝜌)𝜃
𝜐−
𝑖
= 𝜌𝜐−

𝑖
+ (1 − 𝜌)𝜐𝑖 for 𝑖 ∈ {1, 2}

end for

5 EXPERIMENTS
In this section, we conduct several experiments on the D4RL bench-
mark [12], dm_control tasks [45], Gym MuJoCo tasks [44] to eval-

uate the performance and time efficiency of the consistency policy.

We also provide various ablation studies for a better understand-

ing of how the hyperparameter (𝛼, 𝜂) in Eq. (13) and new loss Eq.

(12) affect the performance. Throughout this paper, the results are

reported by averaging five random seeds. For a detailed look at
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Table 2: The performance of CPQL and SOTA baselines on dm_control tasks under 500K environment steps. The results of
MPO, DMPO, D4PG, and DreamerV3 are from the paper of DreamerV3 [19].

Tasks TD3 SAC PPO MPO DMPO D4PG DreamerV3 CPQL

Acrobot Swingup 46.8 33.2 34.4 80.6 98.5 125.5 154.5 183.1
Cartpole Balance 982.6 961.9 997.6 958.4 998.5 998.8 990.5 999.2
Cartpole Balance Sparse 992.0 993.5 1000.0 998.0 994.0 979.6 996.8 1000.0
Cartpole Swingup 829.2 781.4 760.7 857.7 857.8 874.6 850.0 860.7

Cheetah Run 546.2 530.9 560.4 612.3 581.6 623.5 575.9 727.6
Finger Spin 847.1 825.4 369.9 766.9 744.3 818.4 937.2 965.4
Finger Turn Easy 337.6 371.4 275.2 430.4 593.8 524.5 745.4 874.1
Finger Turn Hard 334.4 344.8 5.06 250.8 384.5 379.2 841.0 864.6
Hopper Hop 40.0 41.7 0.0 37.5 71.5 67.5 111.0 130.1
Hopper Stand 322.7 270.9 2.2 279.3 519.5 755.4 573.2 902.1
Reacher Easy 968.8 973.4 541.6 954.4 965.1 941.5 947.1 981.2
Reacher Hard 965.7 928.2 518.0 914.1 956.8 932.0 936.2 963.6

Walker Run 274.5 445.9 131.7 539.5 462.9 593.1 632.7 683.8
Walker Stand 957.7 973.4 528.4 960.4 971.6 935.2 956.9 983.6
Walker Walk 934.7 922.8 408.9 924.9 933.1 965.1 935.7 952.6

Average 625.3 626.6 408.9 637.7 675.6 700.9 745.6 804.9

the experimental setup and corresponding hyperparameters, please

refer to Appendix C.

Baselines for Offline RL Tasks. For offline scenario, we evaluate

on two domains of D4RL benchmark and compare CPQL with

current methods that achieve SOTA performance, including Q-

learning with policy constraints such as TD3+BC [13], implicit

Q-learning such as IQL [25], and diffusion-model-based methods,

such as Diffuser [22], DecisionDiffuser (DD) [3], SfBC [7], IDQL [20],

Diffusion-QL[48], EDP [23], QGDO [33]. Notably, Diffuser and DD

employ the diffusion model to capture trajectory dynamics, while

the remaining methods focus on modeling policy distributions.

Baselines for Online RL Tasks. For the online scenario, we evalu-
ate on several tasks, such as dm_control tasks and Gym MuJoCo
tasks. We compared CPQL with the current methods of achieving

SOTA. These methods include off-policy methods such as TD3 [15],

SAC [18], MPO [2], D4PG [4], DMPO [1], and on-policy methods

such as PPO [41]. In addition, the comparison methods also include

model-basedmethods such as DreamerV3 [19], and diffusion-model-

based methods such as DIPO [52].

5.1 Overall Results
In this section, we illustrate the overall results on the offline tasks

(D4RL) and the online tasks (dm_control, Gym Mujoco), showing
that CPQL achieves competitive performance on both offline and

online tasks compared with current SOTA methods. All training

curves for CPQL and CPIQL can be found in Appendix E.

5.1.1 Results on D4RL (Offline Tasks). Firstly, we evaluate themeth-

ods on offline D4RL tasks. The experimental results are shown in

Table 1. From the experimental results, we can see that the methods

based on the diffusion model have significant advantages in per-

formance compared with the unimodal distribution policy method

(TD3+BC and IQL). Compared with Diffusion-QL and EDP, QGPO

achieves excellent performance by using an accurate guided value

function with contrastive loss. Our proposed CPQL avoids inaccu-

rate guidance problems by modeling ODE trajectory mapping, thus

achieving competitive results by approximately 4% improvement

(compared with Diffusion-QL). By comparing CPQL and CPIQL,

we can find that consistency policy can effectively constrain the

sampling of OOD actions without the help of implicit Q-learning.

Additionally, CPIQL outperforms IQL by a significant 16.5% on lo-

comotion tasks, indicating that the strong representation ability

of consistency policy can effectively achieve policy improvement

with accurate diffusion guidance. In conclusion, CPQL achieves bet-

ter guidance with value function while meeting constraints, thus

making their performance outstanding on offline tasks.

5.1.2 Results on dm_control (Online Tasks). Next, we evaluate the
methods on 15 dm_control tasks. Part of the training curves and all
experimental results are shown in Figure 2 and Table 2, respectively.

As shown in Figure 2, CPQL has shown an improvement in both

training stability and sample efficiency with better performance

when compared to other algorithms under a small number of in-

teractions with the environment (500 K). Also, the experimental

results show that CPQL performance outperforms previous SOTA

methods, including DreamerV3 on 15 tasks, especially on "Cheetah

Run" and "Finger Turn Easy" tasks. On average, there has been an

improvement of approximately 8% as compared to DreamerV3. In

addition, CPQL directly models the policy and is not plagued by

inaccurate diffusion guidance, resulting in better performance on

complex tasks, with great representation ability for the policy. It

is worth mentioning that DMPO and D4PG have adopted the dis-

tributional value function [5], which has proved to achieve better

performance than the expected value function. While CPQL only

uses the expected value function, it has shown significant perfor-

mance leadership, which also means the importance of exploration

in RL, and the consistency model has great potential in RL.

5.1.3 Results on Gym MuJoCo (Online Tasks). We also evaluate the

methods on 6 tasks of Gym MuJoCo. Part of the training curves
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Figure 2: Training curves for 8 online tasks, including 6 tasks from dm_control (top row, and leftmost two of the bottom row)
and 2 tasks from Gym Mujoco (rightmost two of the bottom row). CPQL, PPO, SAC and TD3 are compared on each task with 5
random seeds.

Table 3: The performance of CPQL and SOTA baselines on
Gym MuJoCo tasks under 1M environment steps.

Tasks TD3 SAC PPO DIPO CPQL

Swimmer-v3 108.3 51.7 94.6 72.2 137.2
Walker2d-v3 4127.0 4631.9 3751.8 4409.6 5139.9
Ant-v3 5421.9 5665.5 2921.0 5620.2 6209.4
HalfCheetah-v3 10779.9 11287.9 2449.5 10475.2 12195.2
Humanoid-v3 5253.0 4993.3 704.1 4878.5 5394.6
HumanoidStandup-v2 136897.9 150934.8 105654.4 145350.2 174480.6

and all experimental results are shown in Figure 2 and Table 3. Con-

sistent with the conclusion on the dm_control tasks, the methods

based on the diffusion model maintain dominance on multiple RL

tasks. As we can see from the rightmost two graphs of the bottom

row in Figure 2, CPQL has significant performance advantages

compared with other algorithms within 1M interactions. It is worth

mentioning that DIPO proposed the concept of action gradient and

used a diffusion model to fit the replay buffer updated by action

gradient. However, on one hand, it will be affected by the coverage

of the initial dataset; on the other hand, only fitting the optimal

data is likely to cause the diffusion model to lose sampling diversity

to reduce its exploration ability. Therefore, CPQL performance is

better than DIPO.

5.2 Time Efficiency
We then evaluate the time efficiency of policy training and inference.

Following the evaluation criterion in EDP [23], we compare meth-

ods including Diffusion-QL, EDP, DIPO, and CPQL by iterations-

per-second (IPS) for training speed and steps-per-second (SPS) for

inference speed. We choose "walker2d-medium-expert-v2" as the

testbed and run eachmethod for 100K iterations of policy updates to

Figure 3: Training and inference speedup on D4RL locomo-
tion tasks. We choose the Diffusion-QL (Pytorch) as the base-
linewith all original data provided inAppendixD. Implemen-
tation for Diffusion-QL(Pytorch), DIPO(Pytorch), EDP(Jax)
are from the official repository, with websites listed in Ap-
pendix C. And we implement Diffusion-QL(Jax) by ourselves
for comparison.

calculate the IPS. Then, we sample 100K transitions by interacting

with the environment to calculate the SPS.

From the result in Figure 3, CPQL’s training and sampling speeds

are far faster than other methods based on the diffusion model. Es-

pecially compared to Diffusion-QL, CPQL has improved its training

speed by nearly 15 times and inference speed by nearly 45 times.

Even though EDP also uses one-step diffusion in actor training to

approximate the multi-step diffusion process in Diffusion-QL, as

well as DPM-solver to speed up sampling, multi-step sampling is

still necessary during Q-function training and inference sampling.
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(a) 𝜂 = 1 and different 𝛼 for selected online RL tasks

(b) 𝛼 = 1 and different 𝜂 for selected offline RL tasks

Figure 4: The effect of the different hyperparameters 𝜂 and 𝛼
on the online and offline policy learning.

Hence the consistency policy also has a noteworthy improvement

in both the training and inference speed compared to the EDP.

5.3 Ablation Study
In this section, we conduct various ablation studies on both online

and offline continuous control tasks to determine the factors affect-

ing the performance, including evaluating the impact of different

parameters on the policy training and analyzing the stability intro-

duced by reconstruction loss during consistency policy training.

Hyperparameter. 𝜂 and 𝛼 respectively control the impact of the

Q-function on policy and the KL divergence between learned policy

and reference policy. In online tasks, we set 𝜂 = 1 and investigate

the impact of different 𝛼 on policy performance. The experimental

results are shown in Figure 4 (a). According to the results of two

different tasks, an appropriate 𝛼 is crucial for obtaining better per-

formance. If 𝛼 is too small or too large, it will cause performance

degradation. But the reasons for performance degradation are differ-

ent. When 𝛼 is small, the consistency policy is more affected by the

gradient of the Q-function, leading to premature loss of sampling

diversity and affecting the exploration ability. When 𝛼 is relatively

large, the data distribution greatly affects the consistency policy,

which leads to the policy ignoring the guidance of the Q-function.

In offline tasks, we set 𝛼 = 1 and investigate the impact of

different 𝜂 on policy performance. The results are shown in Figure

4 (b). The results of two different tasks indicate that when the

𝜂 ratio is small, the impact of the Q-function decreases, and the

performance of the policy tends to approach that of behavioral

cloning. When 𝜂 is relatively large, the constraint effect of the

Figure 5: The effect of the different training losses on policy
learning.

dataset on the policy decreases, leading to more OOD actions in

the sampling process, resulting in deviation of Q-value estimation,

which also leads to performance degradation.

Training Loss for Consistency Model. We propose replacing con-

sistency training loss 𝐿𝐶𝑇 with reconstruction loss 𝐿𝑅𝐶 . Here we

study the influence of two different loss functions on policy train-

ing as shown in Figure 5. During the policy training, we find that

consistency training loss would lead to policy collapse. The results

show that reconstruction loss makes the training process more

stable and can achieve better results.

6 CONCLUSION
In this work, we propose the time-efficiency consistency policy with

Q-learning (CPQL), which constructs the mapping from the PF ODE

trajectories to the desired policy and achieves policy improvement

with accurate guidance for both offline and online RL tasks. We

also introduce an empirical loss for stabilizing consistency policy

training. Experimental results show that CPQL achieves about 4%

improvement on D4RL locomotion tasks (compared to Diffusion-

QL) and 8% improvement on dm_control tasks (compared to Dream-

erV3). Meanwhile, CPQL significantly improves inference speed by

nearly 45 times compared to Diffusion-QL. We show the potential

of the consistency model in RL and believe this impact is profound.

Its efficient sampling speed has greatly expanded real-time applica-

tions such as robot control based on the diffusion model. Of course,

there are still many problems, especially for online RL. For instance,

how to better control the diversity of diffusion model in the training

process and whether it is possible to build a multi-step consistency

policy or not to enhance the representation of the policy is worth

studying.
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