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ABSTRACT
In game theory, a fundamental class of games is impartial combi-

natorial games (ICGs). One of the challenging and long-standing

problems of ICGs is to compute generalized winning strategies for

possibly infinite number of legal states. Recently, Wu et al. proposed

an automated method to synthesize generalized winning strategies

of infinite-state ICGs. Their method has two major drawbacks: (1) it

fails to generate winning formula with large size; and (2) it cannot

usually construct the winning strategy even the winning formula is

obtained. To tackle the above two drawbacks, in this paper, we pro-

pose the problem of exact binary classification and design a partial

MaxSAT-based method to this problem. Then, we reduce the synthe-

sis problem of generalized winning strategies of infinite-state ICGs

to exact binary classification. The experimental results show that

our method is more scalable and effective than Wu et al.’s approach.
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1 INTRODUCTION
Game theory is the study of mathematical models of strategic in-

teractions among rational agents and has numerous applications in

several areas of artificial intelligence, including multi-agent systems

[2, 37], imitation and reinforcement learning [36, 38] and adversary
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training in generative adversarial networks [10, 16]. Impartial com-

binatorial games (ICGs) are a fundamental branch of game theory

that studies sequential games with perfect information. An ICG

satisfies the following conditions [15]: (1) there are two players

and possibly infinitely many states such that the player can move

from one state to another one; (2) two players alternate moving

and have the same choice of moving; (3) the game ends when it

moves to an ending state in which no player has a possible move;

(4) the game always ends in a finite number of moves, and the last

player to move wins. The states in an ICG are classified into two

categories: winning and losing. One player has the ability to win

the game in a winning state while it is impossible in a losing state.

In general, an ICG contains infinite number of states, and so

winning and losing states are infinite. Identifying the exact charac-

teristic of the set of winning states has always been a long-standing

topic of ICGs [5, 20, 24, 30]. But the above works are manually ac-

complished by mathematicians and computer scientists. Moreover,

they do not provide an explicit strategy that defines which action to

be executed so as to reach a losing state from a winning state. The

player has to compute an appropriate action repeatedly in every

winning state when playing an ICG.

Recently, Wu et al. [33] proposed an automated synthesis ap-

proach called Enum to computing winning strategies. The Enum

approach represents the set of winning states in an arithmetic

formula, namely the winning formula. To generate the winning

formula, Enum adopts a simple enumerative algorithm proposed in

[31], generating candidate solutions iteratively by induction on the

size until it finds a correct solution. After obtaining the winning

formula, Enum splits it into a set of arithmetic terms such that

their disjunction is equivalent to the winning formula according

to a set of simple division rules. For each term, Enum also uses

the enumerative algorithm to get the desired action such that the

player reaches a losing state from any state satisfying the term via

performing this action. However, Wu et al.’s approach has two ma-

jor drawbacks: (1) It does not scale well since exhaustive generation

of all candidate formulas becomes time consuming when the size

of the winning formula is relatively large; (2) It fails to compute

a winning strategy as the simple division rules cannot make sure

that each term has the proper action.
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The above two drawbacks of the Enum approach drive us to pro-

pose a more scalable method for synthesizing winning strategies.

For the first drawback, we observe that in the synthesis of winning

formulas, the crucial step is to generate a candidate formula that is

consistent with two generated sets of positive states and negative

states. To accelerate this step, we first formulate it as exact binary

classification problem with all atoms as classification attributes and

encode each classification problem as an instance of the partial

MaxSAT problem. We can acquire the winning formula of large size

with the aid of off-the-shelf partial MaxSAT solvers. To address the

second drawback, our approach first produces a finite set of actions

that transforms at least one winning state to a losing state, and then

determines the condition formula that captures the set of winning

states from which performing the action leads to a losing state for

each action. The actions and their corresponding conditions formu-

las form a winning strategy. We evaluate our proposed approach

on the publicly available benchmark composed of 5 categories of

ICGs: Subtraction, Nim, Wythoff, Welter, and Chomp for a total of

3, 720 test cases. The experimental results show that our approach

achieves a significant improvement over Wu et al.’s approach.

2 PRELIMINARIES
In this section, we introduce the syntax of linear integer arithmetic

(LIA), and the partial maximum satisfiability (MaxSAT) problem.

2.1 Linear Integer Arithmetic
Let N be the set of integers andV the set of variables. Linear inte-
ger arithmetic expressions (Exp), atoms (Atom) and formulas (Form)
are defined by the following grammar:

𝑒, 𝑒1, 𝑒2 ∈ Exp :: 𝑐 | 𝑣 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2
𝑙 ∈ Atom :: 𝑒1 = 𝑒2 | 𝑒1 < 𝑒2 | 𝑒1 ≤ 𝑒2 | 𝑒 ≡𝑐1 𝑐2

𝜙, 𝜙1, 𝜙2 ∈ Form :: ⊤ | ⊥ | 𝑙 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ∀𝑣𝜙 | ∃𝑣𝜙
where 𝑐, 𝑐1, 𝑐2 ∈ N and 𝑣 ∈ V .

The atom 𝑒 ≡𝑐1 𝑐2 means that 𝑒 and 𝑐2 are congruence modulo 𝑐1,

that is, 𝑒−𝑐2 is divisible by 𝑐1. We use 𝑒1 ≠ 𝑒2 for¬(𝑒1 = 𝑒2), 𝑒1 > 𝑒2
for ¬(𝑒1 ≤ 𝑒2), 𝑒1 ≥ 𝑒2 for ¬(𝑒1 < 𝑒2), 𝑒 .𝑐1 𝑐2 for ¬(𝑒 ≡𝑐1 𝑐2), and
𝜙1 → 𝜙2 for ¬𝜙1 ∨ 𝜙2. We use |𝑒 | (resp. |𝜙 |) to represent the size

of an LIA expression 𝑒 (resp. LIA formula 𝜙), that is, the number

of occurrences of integers, variables and connectives in 𝑒 (resp. 𝜙).

For example, the formula 𝑣1 = 3 has size 3. Given a set Ψ of atoms,

we say a formula 𝜙 is based on Ψ, iff it is built from the set Ψ, the
connectives ¬,∨,∧,→ and two Boolean constants ⊤ and ⊥. For
example, suppose that Ψ = {𝑥 = 1, 𝑥 > 2}. The formula ¬(𝑥 = 1 ∨
𝑥 > 2) is based on Ψ, but 𝑥 ≤ 3∧𝑥 > 2 is not as the atom 𝑥 ≤ 3 ∉ Ψ.

It is well-known that LIA allows for quantifier elimination, that is,

any LIA formula can be transformed into an equivalent quantifier-

free formula (qf-formula) [12, 27]. We use Formqf for the set of

qf-formulas. Let U be a subset {𝑢1, · · · , 𝑢𝑛} of variables. We use

ExpU for the set of expressions overU. We use FormU for the set

of formulas of which free variables areU. The notation FormqfU is

similar. We use ∀U𝜙 for ∀𝑢1 · · · ∀𝑢𝑛𝜙 and ∃U𝜙 for ∃𝑢1 · · · ∃𝑢𝑛𝜙 .

2.2 Partial Maximum Satisfiability
Given a propositional formula in conjunctive normal form, the sat-
isfiability (SAT) problem aims to determine if there is an assignment

that satisfies all of the clauses in the formula. The maximum sat-
isfiability (MaxSAT) problem, the optimization variation of the SAT

problem, searches a truth assignment that satisfies the maximum

number of clauses. One of the significant generalizations of the

MaxSAT problem is the partial MaxSAT problem. It divides the

clauses into two types: hard and soft, and searches an assignment

that satisfies all of the hard clauses and maximizes the number of

satisfied soft clauses.

3 IMPARTIAL COMBINATORIAL GAMES
In this section, we first introduce the concepts of numeric states

and actions that serve as the theoretical basis of ICGs. Then, we

present the formalization of ICGs and essential concepts of ICGs,

including winning states, winning formulas and winning strategies.

Finally, we present several constraints for correctness verification

of winning formulas and strategies.

3.1 Numeric States and Actions
Throughout this paper, we use the notion X for the set of state

variables that are used to define numeric states. An expression 𝑒

(resp. a formula 𝜙) is semi-ground, if 𝑒 ∈ ExpX (resp. 𝜙 ∈ FormX ).
A numeric state 𝑠 is an interpretation that maps every state vari-

able 𝑣 to an integer 𝑣 (𝑠). For a state 𝑠 , we can evaluate a semi-ground

expression 𝑒 into an integer 𝑒 (𝑠) that the expression simplifies to

when replacing each state variable 𝑣 with its corresponding value

𝑣 (𝑠). The Boolean value 𝜙 (𝑠) of a semi-ground formula 𝜙 can be

defined in a similar way. A numeric state 𝑠 satisfies a formula 𝜙 ,

denoted by 𝑠 |= 𝜙 , iff 𝜙 (𝑠) = ⊤. A formula 𝜙 implies another one𝜓 ,
denoted by 𝜙 |= 𝜓 , iff 𝑠 |= 𝜓 for every state 𝑠 satisfying 𝜙 . A formula

𝜙 is valid, iff 𝑠 |= 𝜙 for every numeric state 𝑠 ; otherwise, it is invalid.
Each action𝑎(K) is parameterized by a vectorK of variables, and

is defined by a pair ⟨pre, eff⟩ where pre ∈ Form is the precondition
and eff is the effect represented by a set of numeric effects. A nu-
meric effect is a triple ⟨𝜙, 𝑣, 𝑒⟩ where 𝜙 ∈ Form, 𝑣 ∈ X, and 𝑒 ∈ Exp.
It implies that if 𝜙 holds in the state 𝑠 , then the value of 𝑣 becomes

𝑒 (𝑠) after executing the action; otherwise, it remains unchanged.

Let 𝑎(K) be an action and Σ a vector of semi-ground expressions

where K and Σ have the same length 𝑛. A semi-ground action 𝑎[Σ]
is obtained from the action 𝑎(K) by replacing the 𝑖-th parameter

𝑘𝑖 of K with the 𝑖-th semi-ground expression 𝑒𝑖 of Σ for 1 ≤ 𝑖 ≤ 𝑛.

If every expression 𝑒𝑖 of Σ is an integer, we say the action 𝑎[Σ]
is ground. For brevity, we sometimes use 𝑎 for semi-ground (even

ground) actions. A semi-ground action 𝑎 is applicable in a state 𝑠 ,

iff 𝑠 |= pre(𝑎). The result of applying an applicable action 𝑎 in a

state 𝑠 is a successor state, written 𝜏 (𝑎, 𝑠), where every variable 𝑣

is associated to an integer 𝑣 (𝜏 (𝑠, 𝑎)) defined as:

𝑣 (𝜏 (𝑠, 𝑎)) =
{
𝑒 (𝑠), if there is ⟨𝜙, 𝑣, 𝑒⟩ ∈ eff(𝑎) and 𝜙 (𝑠) = ⊤;
𝑣 (𝑠), otherwise.

3.2 Formalization
We hereafter present the formalization of ICGs proposed in [33].

Definition 1. An ICG is defined as a tuple Π = ⟨X,A, C, E⟩
where

• X: a finite set of state variables.
• A: a finite set of numeric actions.
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• C: a formula of FormX denoting all legal states.

• E: a formula of FormX denoting all ending states.

The player who executes the final action wins. There are two

categories of legal states: winning and losing. The player can force a

win in the winning state whereas it is impossible in the losing state.

Definition 2 ([15]). Let Π = ⟨X,A, C, E⟩ be an ICG. The sets

W of winning states and L of losing states are recursively defined

as

(1) {𝑠 | 𝑠 |= C ∧ E} ⊂ L;
(2) 𝑠 ∈ W, if there is an applicable ground action 𝑎 over 𝑠 s.t.

𝜏 (𝑠, 𝑎) ∈ L;
(3) 𝑠 ∈ L, if for every applicable ground action 𝑎 over 𝑠 , we

have 𝜏 (𝑠, 𝑎) ∈ W.

Definition 2 provides the exact characteristics of winning and

losing states in a recursive way. In the base case, Condition 1 re-

quires all legal ending states to be losing states. Both Conditions

2 and 3 are induction steps. Condition 2 says that every state such

that at least one applicable action results in a losing state is a win-

ning state. Condition 3 means that every state such that all possible

successor states are winning states is a losing state. The setsW of

winning states and L of losing states are disjoint.

Since the setW is in general infinite, we give the symbolic

representation ofW, namely winning formula.

Definition 3 ([33]). Let Π = ⟨X,A, C, E⟩ be an ICG andW
the set of winning states of Π. A formula 𝜙 ∈ FormX is a winning
formula of Π, iff {𝑠 | 𝑠 |= 𝜙 ∧ C} =W.

In general, there are many logical different winning formulas

for an ICG. But they are logically equivalent under the background

theory C, that is, C |= 𝜙 ≡ 𝜙 ′. Hence, we sometimes call a winning

formula the winning one. A rule (𝜓, 𝑎) is a pair of semi-ground for-

mulas𝜓 and actions 𝑎. Given a rule (𝜓, 𝑎), we call𝜓 the condition

formula of (𝜓, 𝑎). A strategy is a set of rules.

Definition 4. Let Π = ⟨X,A, C, E⟩ be an ICG and 𝜙 a winning

formula of Π.

• A rule (𝜓, 𝑎) is winning, iff for every state 𝑠 satisfying C ∧
𝜙 ∧𝜓 , we have 𝑎 is applicable in 𝑠 and 𝜏 (𝑠, 𝑎) ∈ L.
• A rule (𝜓, 𝑎) is complete, iff for every state 𝑠 s.t. 𝜏 (𝑠, 𝑎) ∈ L,
we have𝜓 (𝑠) = ⊤.
• A strategy {(𝜓1, 𝑎1), · · · , (𝜓𝑛, 𝑎𝑛)} is winning, iff every rule

(𝜓𝑖 , 𝑎𝑖 ) is winning.
• A strategy {(𝜓1, 𝑎1), · · · , (𝜓𝑛, 𝑎𝑛)} is complete, iff

∨𝑛
𝑖=1𝜓𝑖 is

the winning formula.

The winning property of the rule (𝜓, 𝑎) requires that executing
the action 𝑎 in every state satisfying C ∧ 𝜙 ∧ 𝜓 yields a losing

state. The completeness property of the rule says that the formula

𝜓 covers all of the states 𝑠 s.t. its successor state 𝜏 (𝑠, 𝑎) is a losing
state. The winning property of the strategy means that each of its

rule is a winning rule. The completeness property of the strategy

stipulates that the disjunction of the condition formula𝜓𝑖 of each

rule is the winning formula. We illustrate the above concepts with

the following ICG: Take-away game [19].

Example 1. The state variable 𝑣 denotes the number of the re-

maining chips in this game. For simplicity, we use an integer 𝑐 to

denote the numeric state where 𝑣 is assigned to 𝑐 . A move consists

of taking any number (from 1 to𝑚) of chips. Here we consider the

case where 𝑚 = 3, which is called Take-away-3 game. All legal

states can be represented by the formula C : 𝑣 ≥ 0. The ending

condition E is 𝑣 = 0, meaning that this game ends when no chip

is available. The following are preconditions and effects of actions.

(1) pre(𝑡𝑎𝑘𝑒 (𝑘)) : 𝑣 ≥ 𝑘 ∧ 𝑘 > 0 ∧ 𝑘 ≤ 3;

(2) eff(𝑡𝑎𝑘𝑒 (𝑘)) : {⟨⊤, 𝑣, 𝑣 − 𝑘⟩};
The two numeric states 0 and 4 are losing states. The former is a

legal ending state. The latter has three applicable semi-ground ac-

tions: 𝑡𝑎𝑘𝑒 (1), 𝑡𝑎𝑘𝑒 (2), and 𝑡𝑎𝑘𝑒 (3). Executing each of them yields

three different winning states 𝜏 (4, 𝑡𝑎𝑘𝑒 (1)) = 3, 𝜏 (4, 𝑡𝑎𝑘𝑒 (2)) = 2,

and 𝜏 (4, 𝑡𝑎𝑘𝑒 (3)) = 1.

The winning formula for this game is 𝑣 .4 0. It means that any

legal state in which the number of the remaining chips is not a mul-

tiple of 4 is a winning state. The three rules (𝑣 ≡4 1, 𝑡𝑎𝑘𝑒 (1)), (𝑣 ≡4
2, 𝑡𝑎𝑘𝑒 (2)) and (𝑣 ≡4 3, 𝑡𝑎𝑘𝑒 (3)) are winning and complete rules,

and form a winning and complete strategy. But (𝑣 = 2, 𝑡𝑎𝑘𝑒 (2)) is a
winning but incomplete rule as there is a state 6 from which taking

2 chips leads to a losing state, which does not satisfy 𝑣 = 2. □

3.3 Correctness Verification
The main idea of the constraint-based verification approach is to

first translate the candidate winning formula and strategy to a set

of constraints represented by LIA formulas and then use the state-

of-the-art SMT solver to determine the validity of these constraints.

We first give the definition of transition formulas and global tran-

sition formulas. The transition formulaT (𝑎(K)) for an action𝑎(K)
reflects the mapping from predecessor states to successor states

due to the effect of 𝑎(K). The global transition formula T (A) rep-
resents the union of the mapping due to the effect of every action

𝑎(K) ∈ A. To distinguish the predecessor state variable and the

successor one, we use the unprimed variable 𝑣 for the former and

the primed one 𝑣 ′ for the latter.

Definition 5. • The transition formula T (𝑎(K)) is
pre(𝑎(K)) ∧∧⟨𝜙,𝑣,𝑒 ⟩∈eff(𝑎 (K) ) (𝜙 → 𝑣 ′ = 𝑒) ∧∧

𝑣∈V [(
∨
⟨𝜙,𝑣,𝑒 ⟩∈eff(𝑎 (K) ) 𝜙) ∨ 𝑣 ′ = 𝑣].

• The global transition formula T (A) is∨
𝑎 (K)∈A ∃K[T (𝑎(K))].

Definition 6. Let Π = ⟨X,A, C, E⟩ be an ICG. The constraints

for the winning formula 𝜙 of Π are as follows:

(1) C ∧ E → ¬𝜙 ;
(2) (C ∧ 𝜙) → ∃X′ [T (A) ∧ (C ∧ ¬𝜙) [X/X′]];
(3) (C ∧ ¬𝜙) → ∀X′ [T (A) → (C ∧ 𝜙) [X/X′]].

where𝜓 [X/X′] is the formula obtained by replacing every occur-

rence of 𝑣 ∈ X in𝜓 with 𝑣 ′.

Each of the above constraints corresponds to each condition of

winning and losing states (cf. Definition 2). As a result, we obtain

the soundness theorem of the constraints for the winning formula.

Theorem 1. Let Π = ⟨X,A, C, E⟩ be an ICG. A formula 𝜙 is the
winning formula forΠ iff all of the constraints illustrated in Definition
6 are valid.

The constraints for winning and complete rules and the sound-

ness theorems are as follows:
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Definition 7. Let Π = ⟨X,A, C, E⟩ be an ICG and 𝜙 a winning

formula of Π.

• The constraint for the winning rule (𝜓, 𝑎) is (C ∧ 𝜙 ∧𝜓 ) →
{pre(𝑎) ∧ ∀X′ [T (𝑎) → ¬𝜙 [X/X′]}.
• The constraint for the complete rule (𝜓, 𝑎) is ∃X′ [T (𝑎) ∧
¬𝜙 [X/X′]] → 𝜓 .

Theorem 2. Let Π = ⟨X,A, C, E⟩ be an ICG. Then, a rule (𝜓, 𝑎)
is winning (resp. complete) iff the constraint for the winning (resp.
complete) rule illustrated in Definition 7 is valid.

The correctness of a strategy {(𝜓1, 𝑎1), · · · , (𝜓𝑛, 𝑎𝑛)} can be veri-

fied according to Definition 7. We first check the correctness of each

rule, and then verify if

∨
𝑖 𝜓𝑖 is equivalent to the winning formula.

4 EXACT BINARY CLASSIFICATION
In this section, we introduce the exact binary classification problem

and propose an approach that reduces this problem to a partial

MaxSAT problem.

Definition 8. Given two sets P of positive states andN of neg-

ative states and a set Ψ of arithmetic atoms, the task of the exact bi-

nary classification problem is to generate a formula 𝜙 based on Ψ s.t.

𝜙 (𝑠) = ⊤ for every state 𝑠 ∈ P and 𝜙 (𝑠) = ⊥ for every state 𝑠 ∈ N .

The exact binary classification problem may not have a solu-

tion in some cases. The sufficient and necessary condition for the

existence of a solution is given by the following theorem.

Theorem 3. Let P and N be a set of positive and negative states,
respectively, and Ψ a set of atoms. The following two statements are
equivalent:

(1) For each pair of positive state 𝑠 and negative state 𝑡 , there is
an atom𝜓 ∈ Ψ s.t.𝜓 (𝑠) ≠ 𝜓 (𝑡).

(2) There exists a formula 𝜙 based on Ψ that discriminates P from
N .

To prove the above theorem, we need the following two defini-

tions that are used to synthesize a desired formula for the exact

binary classification problem if the solution exists.

Definition 9. Let P andN be two sets of positive and negative

states, respectively, and Ψ a set of atoms. The filter set ΨP,N of

Ψ w.r.t. P and N is {𝜓 | 𝜓 ∈ Ψ and𝜓 (𝑠) ≠ 𝜓 (𝑡) for some 𝑠 ∈
P and 𝑡 ∈ N}.

The filter set is the subset of Ψ in which each atom classifies at

least one positive state and one negative state.

Definition 10. Let 𝑆 be a set of states and Ψ a set of atoms. The

characteristic formula of 𝑆 based onΨ is

∨
𝑠∈𝑆 [(

∧
𝜓 ∈Ψ and𝜓 (𝑠 )=⊤𝜓 )

∧ (∧𝜓 ∈Ψ and𝜓 (𝑠 )=⊥ ¬𝜓 )].

The conjunct (∧𝜓 ∈Ψ and𝜓 (𝑠 )=⊤𝜓 ) ∧ (
∧
𝜓 ∈Ψ and𝜓 (𝑠 )=⊥ ¬𝜓 ) can

be considered as a truth assignment of the state 𝑠 on the set Ψ of

atoms. The characteristic formula collects the assignments of every

state 𝑠 ∈ 𝑆 on Ψ.
Proof of Theorem 3: (⇐): Let 𝜙 be a formula based on Ψ

s.t. 𝜙 discriminates P from N . We prove the first statement by

contradiction. Let 𝑠 ∈ P and 𝑡 ∈ N s.t. no atom𝜓 ∈ Ψ satisfies the

property𝜓 (𝑠) ≠ 𝜓 (𝑡). It follows that 𝜙 (𝑠) = 𝜙 (𝑡). This contradicts
the assumption.

States 𝑣 = 0 𝑣 ≡2 0 𝑣 ≡3 0 𝑣 ≡4 0

P
1 ⊥ ⊥ ⊥ ⊥
2 ⊥ ⊤ ⊥ ⊥
3 ⊥ ⊥ ⊤ ⊥

N 0 ⊤ ⊤ ⊤ ⊤
4 ⊥ ⊤ ⊥ ⊤

Table 1: The example of learning the characteristic formula

(⇒): Let 𝜙 be the characteristic formula of P based on ΨP,N .
Clearly, 𝜙 is also based on Ψ. By Definition 10, for every positive

state 𝑠 , 𝜙 contains (∧𝜓 ∈Ψ and𝜓 (𝑠 )=⊤𝜓 ) ∧ (
∧
𝜓 ∈Ψ and𝜓 (𝑠 )=⊥ ¬𝜓 ).

Hence, 𝑠 |= 𝜙 . By the assumption and Definition 9, for every neg-

ative state 𝑡 , there is an atom 𝜓 ∈ ΨP,N and a positive state 𝑠 s.t.

𝜓 (𝑡) ≠ 𝜓 (𝑠). None of the conjuncts of 𝜙 is satisfied by 𝑡 . Hence,

𝑡 |=/ 𝜙 . In summary, 𝜙 discriminates P from N . □
The proof of Theorem 3 offers a direct method to obtain a formula

that discriminates positive states from negative ones. In general,

the given set Ψ includes a large number of arithmetic atoms. So is

the filter set ΨP,N . Therefore, the characteristic formula of P based

on ΨP,N has large size and is difficult to be applied in strategy

synthesis.

To decrease the amount of atoms in the solution, we devise a

practical method to the exact binary classification problem based

on partial MaxSAT. The propositional encoding 𝑇 (P,N ,Ψ) takes
as inputs two sets P of positive states andN of negative states and

the set Ψ of arithmetic atoms. The propositions in 𝑇 (P,N ,Ψ) are
• 𝑆𝑒𝑙 (𝜓 ): the atom𝜓 ∈ Ψ appears in the formula 𝜙 .

The hard constraints of 𝑇 (P,N ,Ψ) are
• ∨

𝜓 (𝑠 )≠𝜓 (𝑡 ) 𝑆𝑒𝑙 (𝜓 ) for every 𝑠 ∈ P and 𝑡 ∈ N .

It means that for every positive state 𝑠 and every negative state 𝑡 , at

least one of the atoms that classify 𝑠 and 𝑡 is chosen, corresponding

to the first statement of Theorem 3.

The clauses in the soft constraints of𝑇 (P,N ,Ψ) are the negative
literal ¬𝑆𝑒𝑙 (𝜓 ) for each atom𝜓 . The partial MaxSAT solver looks

for a solution with the fewest possible arithmetic atoms.

Example 2. We use Take-away-3 game to illustrate the method

to learn the characteristic formula. Suppose that we are given the

sets of positive states P : {1, 2, 3} and of negative states N : {0, 4},
and the set of arithmetic atoms Ψ : {𝑣 = 0, 𝑣 ≡2 0, 𝑣 ≡3 0, 𝑣 ≡4 0}.
The Boolean value of every atom on every state is shown in Table 1.

The propositional encoding 𝑇 (P,N ,Ψ) include four propositions:
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣 = 0), 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣 ≡2 0), 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣 ≡3 0), 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑣 ≡4
0). The hard and soft constraints are constructed as mentioned be-

fore. The partial MaxSAT solver returns the following assignment:

𝑆𝑒𝑙 (𝑣 = 0) = ⊥, 𝑆𝑒𝑙 (𝑣 ≡2 0) = ⊥, 𝑆𝑒𝑙 (𝑣 ≡3 0) = ⊥, 𝑆𝑒𝑙 (𝑣 ≡4 0) = ⊤.
Only the atom 𝑣 ≡4 0 is picked from the assignment. As the cho-

sen atom does not hold in every state of P, its negation 𝑣 .4 0 is the
characteristic formula of P based on Ψ. In addition, it exactly clas-

sifies the given states of positive states and of negative states. □

5 SYNTHESIZINGWINNING FORMULAS AND
STRATEGIES

In this section, based on exact binary classification, we solve two

key synthesis problems of ICGs: winning formulas and strategies.
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Algorithm 1: SynWinForm
1 Initialize the set 𝑆 of legal states

2 P,N ← ClassifyStates(𝑆 )
3 while true do
4 Ψ← EnumerateAtoms(P,N)
5 𝜙 ← ExactBinaryClassify(P,N,Ψ)
6 𝑆 ′ ← VerifyWinForm(𝜙 )
7 if 𝑆 ′ = ∅ then
8 return 𝜙

9 else
10 P′,N′ ← ClassifyStates(𝑆 ′ )
11 P ← P ∪ P′ and N ← N ∪ N′

5.1 Synthesizing Winning Formulas
In this subsection, we propose a counterexample-guided inductive

synthesis (CEGIS) approach to synthesizing winning formulas for

ICGs over infinite states, illustrated in Algorithm 1. A counterex-

ample in this approach in fact is a state in ICGs. The main idea

of Algorithm 1 is as follows: It first attempts to generate a candi-

date formula 𝜙 via a set of counterexamples, and then verifies the

correctness of 𝜙 . If 𝜙 passes the verification, then the algorithm

terminates with the winning formula 𝜙 . Otherwise, a set of new

counterexamples will be gathered and used to create a new candi-

date formula. The above steps repeat until the algorithm discovers

the winning formula of the ICG.

We hereafter elaborate Algorithm 1 in details. It initializes the

set 𝑆 as a finite set of legal states, which is accomplished by an SMT

solver (Line 1). Each legal state 𝑠 is the state satisfying the formula C
denoting all legal states (cf. Definition 1). The SMT solver takes the

formula C as input, and returns a state satisfying C. Since the SMT

solver works in a deterministic manner, it always returns the same

state for the formula C. We can easily fix this defect and generate

many different legal states via adding an extra subformula on C.
Suppose that we are given a set 𝑆 ′ of legal states. The formula C𝑆 ′
is C ∧∧

𝑠∈𝑆 ′ ¬[
∧

𝑣∈X (𝑣 = 𝑣 (𝑠))], and hence any state satisfying

C𝑆 ′ is a legal state not in 𝑆 ′.
The set 𝑆 of states will be classified into two sets P of positive

states andN of negative states (Line 2). In ICGs, each positive state

is a winning state while each negative state is a losing state. The

classification can be accomplished via backward induction accord-

ing to the definition of winning and losing states (Definition 2).

Algorithm 1 then enters a loop until a winning formula is dis-

covered (Lines 3 - 11). It generates a set Ψ of arithmetic atoms of

increasing sizes until for every pair of positive state and negative

state, there is an atom𝜓 ∈ Ψ classifying them. By Theorem 3, this

property guarantees that we are able to obtain a formula that pre-

cisely distinguishes P from N . In order to prune the huge size of

Ψ, we eliminate some arithmetic atoms in Ψ. For example, if two

atoms 𝜓 and 𝜓 ′ agrees on every state of 𝑆 (i.e., 𝜓 (𝑠) = 𝜓 ′ (𝑠) for
𝑠 ∈ 𝑆), then only one is kept and the other is removed.

With the two sets of positive states and of negative states and the

set of atoms in hand, we can produce a candidate winning formula

𝜙 via exact binary classification mentioned in Section 4 (Line 5).

Then, using an SMT solver we check whether the candidate formula

𝜙 is a winning formula according to the constraints illustrated in

P N Candidate formulas Counterexamples

1 0 𝑣 = 1 3

1, 3 0 𝑣 > 0 4

1, 3 0, 4 𝑣 .2 0 2

1, 2, 3 0, 4 𝑣 .4 0 ∅
Table 2: A run of synthesizing the winning formula

Definition 6 (Line 6). If 𝜙 is correct (that is, 𝑆 ′ = ∅), then Algorithm

1 terminates with the solution𝜙 (Line 8). Otherwise, the verification

procedure yields some states of 𝑆 ′ that are witnesses of its failure
and incorporates them into P and N , respectively (Lines 10 - 12).

By Theorem 1, the verification procedure confirms the soundness

property of Algorithm 1 for synthesizing the winning formula.

Theorem 4. Let Π = ⟨X,A, C, E⟩ be an ICG. The formula re-
turned by Algorithm 1 is the winning formula of Π.

Example 3. Table 2 shows the run of synthesizing the winning

formula of Take-away-3 game. At the beginning, only the state 1

is in the set P and the state 0 in N . Our approach generates the

formula 𝑣 = 1 as the candidate solution that is consistent with P
and N . However, it is not the correct winning formula that holds

for all the legal states and the SMT solver returns a winning state

3. Our approach takes into account the new state. Two candidate

formulas 𝑣 > 0 and 𝑣 .2 0 are sequentially found. The above two

formulas, however, both fail to verify and return a losing state 4 and

a winning state 2, respectively, as counterexamples to the two for-

mulas. Finally, the algorithm terminates with the correct winning

formula 𝑣 .4 0 that constructed from the above 5 states.

5.2 Synthesizing Winning Strategies
After the process of synthesizing winning formulas, we have the

winning formula 𝜙 and the two sets of states P and N that are

used to produce 𝜙 via exact binary classification. In this subsection,

we also devise a CEGIS approach to synthesizing winning strate-

gies, illustrated in Algorithm 2. It first generate a pool of candidate

actions for the set of positive states. For each action, we synthe-

size its condition formula via the partial Max-SAT-based approach.

This step will continue until we synthesize a winning strategy that

consists of a set of pairs of action and its condition formula. The

following gives a comprehensive explanation of the algorithm.

In the main loop of Algorithm 2, it first generates a pool A𝑝 of

semi-ground actions such that every state 𝑠 ∈ P has at least one

action 𝑎 ∈ A𝑝 that transforms 𝑠 to a losing state 𝜏 (𝑠, 𝑎) (Line 3). For
every action 𝑎 of A𝑝 , if it does not appear in the strategy 𝛿 , then

the inner loop of Algorithm 2 attempts to generate a formula 𝜓𝑎
and produces a rule (𝜓𝑎, 𝑎) (Lines 4 - 17). We reduce the problem

of generating the formula 𝜙𝑎 to exact binary classification problem.

We then collect the set P𝑎 of positive states and N𝑎 of negative

states for this problem (Lines 5 - 10). Every 𝑠 ∈ P is a positive state

for generating the formula 𝜙𝑎 , if the following conditions hold: (1)

the action 𝑎 is applicable over 𝑠 ; and (2) the successor state 𝜏 (𝑠, 𝑎) is
a losing state. In contrast, the set N𝑎 includes the positive states of

P not comply with the above two conditions and all negative states

ofN . Similarly to Algorithm 1, it enumerates a set Ψ𝑎 of arithmetic
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Algorithm 2: SynWinStrat(𝜙,P,N)
Input: 𝜙 : the winnig formula of the ICG

P: the set of positive states
N: the set of negative states

Output: 𝛿 : a winnig strategy
1 𝛿 ← ∅
2 while true do
3 A𝑝 ← EnumerateActions(P)
4 foreach 𝑎 ∈ A𝑝 s.t. (𝜓𝑎, 𝑎) ∉ 𝛿 do
5 P𝑎 ← ∅ and N𝑎 ← N
6 foreach 𝑠 ∈ P do
7 if 𝑎 is applicable over 𝑠 and 𝜏 (𝑠, 𝑎) ∈ L then
8 P𝑎 ← P𝑎 ∪ {𝑠 }
9 else
10 N𝑎 ← N𝑎 ∪ {𝑠 }

11 Ψ𝑎 ← EnumerateAtoms(P𝑎,N𝑎 )
12 𝜓𝑎 ← ExactBinaryClassify(P𝑎,N𝑎,Ψ𝑎 )
13 𝑆 ′ ← VerifyRule(𝜓𝑎, 𝑎)
14 if 𝑆 ′ = ∅ then
15 𝛿 ← 𝛿 ∪ { (𝜓𝑎, 𝑎) }
16 else
17 P ← P ∪ 𝑆 ′

18 𝑆∗ ← IsValid( (C ∧ 𝜙 ) ↔ [C ∧ (∨(𝜓𝑎 ,𝑎) ∈𝛿 𝜓𝑎 ) ] )
19 if 𝑆∗ = ∅ then
20 return Simplify(𝛿)

21 else
22 P ← P ∪ 𝑆∗

atoms of increasing sizes and then creates the candidate formula

𝜓𝑎 that classifies P𝑎 from N𝑎 .
The correctness of the rule (𝜓𝑎, 𝑎) will be validated according to

the constraint for the winning rule (cf. Definition 7) (Line 13). If the

constraint is valid, then no counterexample is returned by the SMT

solver. Otherwise, we are given a set 𝑆 ′ of states certifying that𝜓𝑎
is not a desired formula for the action 𝑎. It is easily verified from

the constraint for the winning rule that (1) the set 𝑆 ′ contains only
winning states; (2) the state 𝑠 ∈ 𝑆 ′ is not an applicable state for 𝑎,

or the successor state 𝜏 (𝑠, 𝑎) is not a losing state. In addition, we

also examine the completeness property of (𝜓𝑎, 𝑎) according to the

constraint for the complete rule (cf. Definition 7). This is because

the action 𝑎 is the unique action that changes some winning states

to a losing state, but𝜓𝑎 may not involve these winning states. We

therefore enlarge the set P by the above winning states (Line 17).

After obtaining a set 𝛿 of winning rules, we will check if 𝛿 forms

a winning strategy, that is, verifying if the formula

∨
(𝜓𝑎,𝑎) ∈𝛿 𝜓𝑎 is

the winning formula (Line 18). Since we have obtained the winning

formula 𝜙 , it suffices to check if 𝜙 and

∨
(𝜓𝑎,𝑎) ∈𝛿 𝜓𝑎 are logically

equivalent under the background theory C. If it is the case (that is,
𝑆∗ = ∅), the algorithm yields the simplified winning strategy (Line

20). The simplification procedure eliminates some rules that are

covered by the other rules. Given two rules (𝜓1, 𝑎1) and (𝜓2, 𝑎2), we
say (𝜓1, 𝑎1) covers (𝜓2, 𝑎2), if𝜓2 |= 𝜓1. In this case, the rule (𝜓2, 𝑎2)
can be eliminated since performing the action 𝑎1 in every state

satisfying𝜓2 leads to a losing state. If the formula

∨
(𝜓𝑎,𝑎) ∈𝛿 𝜓𝑎 is

not the winning formula, then some winning states 𝑠 do not have

Round A𝑝 P𝑎 N𝑎 𝜓𝑎 𝑆 ′ 𝑆∗

1

𝑡𝑎𝑘𝑒 (1) 1, 5 0, 2, 3, 4 𝑣 ≡4 1 ∅
9

𝑡𝑎𝑘𝑒 (2) 2 0, 1, 3, 4, 5 𝑣 = 2 6

𝑡𝑎𝑘𝑒 (3) 3 0, 1, 2, 4, 5 𝑣 = 3 7

𝑡𝑎𝑘𝑒 (𝑣) 1, 2, 3 0, 4, 5 𝑣 ≥ 1 ∧ 𝑣 < 4 ∅

2

𝑡𝑎𝑘𝑒 (2) 2, 6 0, 1, 3, 4, 5, 7, 9 𝑣 ≡4 2 ∅
∅𝑡𝑎𝑘𝑒 (3) 3, 7 0, 1, 2, 4, 5, 6, 9 𝑣 ≡4 3 ∅

𝑡𝑎𝑘𝑒 (𝑣 − 4) 5, 6, 7 0, 1, 2, 3, 4, 9 𝑣 ≥ 5 ∧ 𝑣 < 8 ∅
Table 3: A run of synthesizing the winning strategy

an semi-ground action 𝑎 such that the successor state 𝜏 (𝑠, 𝑎) is a
losing state. The set P will be extended by 𝑆∗ for the next iteration
of the main loop (Line 22).

Each rule generated in Algorithm 2 is guaranteed to be complete

and winning. In addition, the formula

∨
(𝜓𝑎,𝑎) ∈𝛿 𝜓𝑎 is the winning

formula. We therefore obtain soundness theorem of Algorithm 2

for synthesizing winning strategies.

Theorem 5. Let Π = ⟨X,A, C, E⟩ be an ICG and 𝜙 the winning
formula of Π. The set of rules returned by Algorithm 2 is a complete
and winning strategy of Π.

Example 4. Table 3 shows the synthesis process of the winning

strategy of Take-away-3 game. In the first iteration, four actions

𝑡𝑎𝑘𝑒 (1), 𝑡𝑎𝑘𝑒 (2), 𝑡𝑎𝑘𝑒 (3) and 𝑡𝑎𝑘𝑒 (𝑣) as well as their correspond-
ing condition 𝜓𝑎 are generated. The two rules (𝑣 = 2, 𝑡𝑎𝑘𝑒 (2))
and (𝑣 = 3, 𝑡𝑎𝑘𝑒 (3)) are winning but incomplete. The two states

6 and 7 are the evidences of incompleteness of the above two

rules, respectively. The other two rules (𝑣 ≡4 1, 𝑡𝑎𝑘𝑒 (1)) and
(𝑣 ≥ 1 ∧ 𝑣 < 4, 𝑡𝑎𝑘𝑒 (𝑣)) are both winning and complete and hence

constitute a strategy. However, this strategy is incomplete since

the formula (𝑣 ≡4 1) ∨ (𝑣 ≥ 1 ∧ 𝑣 < 4) ignores the winning state 9

that is a counterexample provided by the SMT solver. In the second

iteration, a new action 𝑡𝑎𝑘𝑒 (𝑣−4) is added into the setA𝑝 . The con-

dition of this action together with 𝑡𝑎𝑘𝑒 (2) and 𝑡𝑎𝑘𝑒 (3) which fail in

the first iteration are generated. The three rules (𝑣 ≡4 2, 𝑡𝑎𝑘𝑒 (2)),
(𝑣 ≡4 3, 𝑡𝑎𝑘𝑒 (3)) and (𝑣 ≥ 5 ∧ 𝑣 < 8, 𝑡𝑎𝑘𝑒 (𝑣 − 4)) are winning and

complete. We put them together and obtain the final winning strat-

egy {(𝑣 ≡4 1, 𝑡𝑎𝑘𝑒 (1)), (𝑣 ≡4 2, 𝑡𝑎𝑘𝑒 (2)), (𝑣 ≡4 3, 𝑡𝑎𝑘𝑒 (3)), (𝑣 ≥
1 ∧ 𝑣 < 4, 𝑡𝑎𝑘𝑒 (𝑣)), (𝑣 ≥ 5 ∧ 𝑣 < 8, 𝑡𝑎𝑘𝑒 (𝑣 − 4))}.

6 EXPERIMENTAL EVALUATION
This section first presents implementation of our proposed al-

gorithms and the benchmarks we establish in the experiments,

and then compares our approach with the enumerative approach,

namely Enum [33], which shows the clear advantage of our ap-

proach over Enum on the number of solved test cases.

6.1 Implementation and Benchmarks
We implemented the partial MaxSAT encoding for exact binary

classification illustrated in Section 4 and Algorithms 1 as well as 2

illustrated in Sections 5.1 and 5.2 in Python 3.7, respectively, called

SynMS. Our implementation reads a PDDL-like file that describes

the formalization of an ICG and outputs the winning formula and

strategy for this ICG. We employ Z3 [28] as the SMT solver to verify

the correctness of the winning formula and strategy as well as to

determine if a state is winning. We adopt NuWLS [11] as the partial
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Category

Test

cases

Formula Strategy

Solved Time Size Solved Time Size

Enum SynMS Enum SynMS Enum SynMS Enum SynMS Enum SynMS Enum SynMS

Sub 479 124(1) 363(240) 138.50(136.93) 61.16(14.26) 10.89(10.80) 61.00(26.03) 84(5) 274(195) 39.67(31.63) 11.50(7.06) 77.92(77.40) 216.84(110.55)

Nim 302 59(29) 73(43) 131.26(22.37) 51.82(24.73) 9.98(8.20) 96.90(37.33) 22(9) 43(30) 8.36(0.91) 294.57(266.84) 15.45(8.46) 300.21(168.31)

Welter 7 3(1) 4(2) 3.07(2.71) 7.03(6.13) 8.67(8.50) 76.50(88.00) 0(0) 1(1) -(-) 29.22(-) -(-) 67.00(-)

Wythoff 2924 1715(89) 2287(661) 47.63(44.61) 24.52(8.11) 8.31(8.29) 75.76(32.40) 308(102) 1266(1060) 0.24(0.33) 11.26(10.02) 4.16(5.75) 197.64(97.69)

Chomp 8 2(0) 2(0) 1.53(1.53) 8.18(8.18) 6.50(6.50) 6.50(6.50) 2(2) 0(0) 0.52(-) -(-) 13.00(-) -(-)

Total 3720 1903(120) 2729(946) 64.40(41.63) 30.54(12.28) 8.87(8.46) 63.33(38.05) 416(118) 1584(1286) 12.20(10.96) 86.64(94.64) 27.63(30.53) 195.42(125.51)

Table 4: Results of synthesizing winning formulas and strategies

(a) Comparison on synthesizing
winning formulas on the whole
benchmark

(b) Comparison on synthesizing
winning formulas on the com-
monly solved benchmark

(c) Comparison on synthesizing
winning strategies on the whole
benchmark

(d) Comparison on synthesizing
winning strategies on the com-
monly solved benchmark

Figure 1: Comparison of the running time of synthesizing winning formula and strategy

MaxSAT solver in order to choose the small set of generated arith-

metic atoms. NuWLS is an incomplete partial MaxSAT solver and

may return a sub-optimal solution. This however has no influence

on the soundness of the chosen set as the solution satisfies the hard

constraint. By Theorem 3, we can always construct a formula from

the chosen set that distinguishes the set of positive states from that

of negative states. The time-out bounds for Z3 and NuWLS are

10 and 3 seconds, respectively. The experiments were conducted

on a PC with an Intel Core i7-7700 3.60 GHz CPU and 16GB RAM

running under Windows 10, with a runtime cutoff of 1, 200 seconds.

Source codes are provided in this link
1
.

We evaluated the performance of our approach SynMS and Enum

[33] on a large number of ICG domains that consist of the following

5 categories: Subtraction [35], Nim [8], Wythoff [34], Welter [32]

and Chomp [17]. Each category contains multiple classes of ICGs,

including some extensions or variants of the original game. Due

to space limits, the description of each test cases are given in this

link
2
. Since the winning formula and strategy are not LIA-definable

or unknown in some classes of ICGs, we impose certain limitations

on these classes in order to guarantee that they have LIA-definable

solution. For example, the winning formula of 3-rowed Chomp

game is unknown. We restrict the maximum number of cookies on

the 3rd row to be a fixed integer and obtain a restricted version of

3-rowed Chomp which has a LIA-definable solution. In summary,

the benchmark consists of a total of 32 classes with 3, 720 test cases,

including the 46 test cases in [33].

1
https://github.com/YMH0607/SynMS/tree/master

2
https://github.com/YMH0607/domain/tree/master

6.2 Experimental Results
We summarize the results on synthesis of winning formulas in

Table 4. The column "Category" and "Test cases" denotes the name

and the number of test cases of each category, respectively. The

columns "Solved" denotes the number of test cases that solved by

each approach, and the figure in parentheses denotes the number of

test cases that solved by the corresponding approach but not by the

other approach. The columns "Time" and "Size" denote the average

time and size of solved test cases for each approach, and the figure

in parentheses denotes the average time and size of the test cases

solved by both approaches, respectively. The optimal data of each

group are in bold.

Comparison on synthesizing winning formulas. Out of

3, 720 test cases, the number of test cases solved by Enum is 1, 903

test cases while SynMS is able to solve 2, 729 test cases including

946 test cases that Enum cannot solve, demonstrating a substantial

improvement over Enum. For a deeper analysis of runtime behavior,

we show the number of solved test cases after a certain amount

of time in Figure 1(a). In only 46 seconds, SynMS is able to solve

approximately 2, 500 test cases. In comparison, Enum only com-

pletes 1, 903 test cases within the timeout 1, 200 seconds. For the

commonly solved 1, 783 test cases, we can see that the running time

of SynMS is 12.28 seconds on average, while Enum runs in 41.63

seconds, resulting in nearly an approximate 3.39× speedup. In addi-

tion, Figure 1(b) displays the results on common benchmarks solved

by both approaches, where x-axis and y-axis are the running time of

Enum and SynMS, respectively. The results indicate that SynMS out-

performs Enum in most cases when computing winning formulas

on commonly solved benchmarks. Enum performs better only when

the size of the winning formula is small, which does not exceed 25.
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We observe that Enum solves 120 test cases that SynMS fails to

solve. The winning formulas of these test cases are an arithmetic

literal (that is, an arithmetic atom or its negation) of large size.

Enum is more effective than SynMS at solving these test cases since

it can enumerate formulas up to size 25. SynMS takes some time

to choose arithmetic atoms and combine the chosen atoms into an

arithmetic formula and hence generates arithmetic atoms of at most

size 7. As for the size, SynMS generates larger formulas than Enum,

with an average size 38.05 on commonly solved test cases, while

Enum has an average size 8.46. In theory, Enum is guaranteed to

find the smallest-size formula via exhaust enumeration [1]. SynMS

constructs the winning formula in disjunctive normal form based on

the selected atoms. In addition, any formula is exponentially smaller

than its equivalent one in disjunctive normal form. It is noticeable

that SynMS achieves a better performance in computing winning

formulas compared to Enum although it sacrifices solution size.

Comparison on synthesizingwinning strategies. The exper-
imental results about synthesizing winning strategies are shown in

the last 6 columns of Table 4 and Figures 1(c) and 1(d). We can make

two observations. First, Enum only computes the winning strategy

on 416 (21.9%) out of 1, 903 test cases of which winning formulas are

successfully obtained by this approach. This is because Enum fails

to refine the winning formula into several arithmetic term so that

each term has a proper action. In contrast, SynMS is able to synthe-

size the winning strategy on 1, 584 test cases and to achieve 58.0%

success rate, both dominating Enum. Algorithm 2 firstly creates a

setA𝑝 of actions, and then synthesizes the corresponding condition

formula𝜓𝑎 for each action 𝑎 ∈ A𝑝 so that (𝜓𝑎, 𝑎) is a winning and

complete rule. So it avoids the weakness of Enum when refining

the winning formula. As Figure 1(c) shows, SynMS solves more

than 1, 500 test cases within only 36 seconds. In contrast, Enum

only solves 416 test cases within 1, 200 seconds. Second, for the

commonly solved 298 test cases, compared to SynMS, Enum is more

effective and produces the winning strategy with a smaller size.

This is due to the simplicity of these test cases. However, SynMS is

an efficient approach to the 1, 286 test cases that Enum cannot solve.

7 RELATEDWORK
Automatic methods to solve ICGs. Two classical methods for

solving the winning strategy of finite-state ICGs are backward

induction [22] and alpha-beta pruning [21]. Backward induction

reasons backward from the ending state to the given initial state.

Alpha-beta pruning reduces the number of nodes in the search tree

that captures the plays from the given initial state by two play-

ers. Recently, Beling and Rogalski [6] proposed a novel method to

prune the search tree based on the node values calculated by the

Sprague-Grundy function. But the above methods do not work for

infinite-state ICGs. Luo and Liu [25] extended the situation calculus

for formalizing ICGs, and proposed a verification method for the

correctness of winning strategies that are defined in finite state

automaton. Their approach however does not address the strategy

synthesis problem. Later, they [26] developed a CEGIS approach

for synthesizing invariant strategies. An invariant strategy is of

the form 𝜙?;𝜋𝑎.𝑎;𝜑?, meaning whenever 𝜙 holds, the player can

execute an action to enforce 𝜑 , and whenever 𝜑 holds, executing

any action makes 𝜑 true regardless of what the action chooses. In

fact, the formulas 𝜙 and 𝜑 are the winning and the losing formulas,

respectively. Strictly speaking, Luo and Liu [26]’s approach only

constructs winning and losing formulas but not winning strategies

that specifies which action to do in different partitions of winning

states (cf. Definition 4). In addition, as reported in [26], their ap-

proach is much less efficient than Enum. Hence, we do not compare

with their approach in experimental evaluation.

LTL synthesis. Pnueli and Rosner [29] first proposed a well-

known class of games, namely linear temporal logic (LTL) games,
where the game is represented by an automaton, and the goal is

expressed by a propositional LTL formula. The objective of LTL

synthesis is to synthesize a strategy that ensures goal achievement.

The LTL synthesis problem has been addressed in numerous litera-

ture, such as [4, 9, 18, 23, 39]. However, the above works only deal

with the synthesis of winning strategies for finite-state games and

cannot be applied to infinite-state games. The synthesis of winning

strategies has been extended to infinite-state games by a number of

ways [3, 7, 13, 14], but these approaches are not suitable for ICGs.

The reasons are the following. Firstly, these approaches only gener-

ates a winning strategy for a specific initial state, and the generated

strategy cannot be generalized to all legal states. Additionally, the

formalization of these approaches are based on linear real arithmetic

(LRA) rather than LIA. The differences between LIA and LRA are the

following: (1) variables in LIA have an integer domain rather than

real one; and (2) LIA contains the congruence modulo relation while

LRA does not. The majority of ICGs contain only integer variables

and require congruence modulo relation in their winning formula.

8 CONCLUSIONS
In this paper, we have introduced a novel method for synthesizing

the winning formula and strategy of ICGs over infinite states. To

this end, we have put forward the exact binary classification prob-

lem that produces an arithmetic formula to separate the given set

of positive states from that of negative states, and devised a partial

MaxSAT-based encoding to solve this problem. Then, by integrating

the partial MaxSAT-based encoding and the SMT-based verification

procedure, we have developed a CEGIS approach to synthesizing

the winning formula and strategy of ICGs, and evaluated the per-

formance of our approach in comparison to the Enum approach on

an ICG benchmark with a significant number of test cases. Exper-

imental results show that our method has better performance and

efficiency.
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