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ABSTRACT
Online auction scenarios, such as bidding searches on advertis-

ing platforms, often require bidders to participate repeatedly in

auctions for identical or similar items. Most previous studies have

only considered the process by which the seller learns the prior-

dependent optimal mechanism in a repeated auction. However, in

this paper, we define a multiagent reinforcement learning environ-

ment in which strategic bidders and the seller learn their strategies

simultaneously and design an automatic bidding algorithm that

updates the strategy of bidders through online interactions. We

propose Bid Net to replace the linear shading function as a represen-

tation of the strategic bidders’ strategy, which effectively improves

the utility of strategy learned by bidders. We apply and revise the

opponent modeling methods to design the PG (pseudo-gradient)

algorithm, which allows bidders to learn optimal bidding strate-

gies with predictions of the other agents’ strategy transition. We

prove that when a bidder uses the PG algorithm, it can learn the

best response to static opponents. When all bidders adopt the PG

algorithm, the system will converge to the equilibrium of the game

induced by the auction. In experiments with diverse environmental

settings and varying opponent strategies, the PG algorithm maxi-

mizes the utility of bidders. We hope that this article will inspire

research on automatic bidding strategies for strategic bidders.
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1 INTRODUCTION
The rapid development of electronic commerce has generated a

significant demand for online auctions [35]. Employing appropriate

mechanisms to facilitate the sale of items, such as advertisements on

electronic platforms, can effectively improve revenue [1, 5, 10, 29].

Among the most prevalent mechanisms in online auctions are the

VCG auction (Vickrey-Clarke-Groves) [32, 33] and the GSP auction

(Generalized Second Price) [10, 12]. Both of these auctions are

instances of the prior-independent auction mechanism, which can

be executed efficiently, but does not maximize revenue.

With the advent of deep reinforcement learning, it has become

feasible to learn optimal auctions and maximize seller revenue

[14, 17]. Deep neural network techniques, such as Myerson Net [9],

ALGNet [27], MenuNet [30], and Deep GSP [38], have been applied

to derive optimal mechanisms based on bidding data, demonstrat-

ing efficiency even in multi-bidder, multi-item auction scenarios.

These methods incorporate prior-dependence of bidders’ value dis-

tribution to the mechanism through the utilization of bidding data

sourced from online auctions. By creating mechanisms that adhere

to the principle of Incentive Compatibility (IC), the seller can col-

lect truthful bidding data from online auctions and employ them to

estimate the value distribution among bidders [3].

Unlike the seller’s perspective, recent studies have introduced

strategic bidding approaches in online auctions [25]. These methods

exploit the process in which the seller learns the value distribution

of the bidders using bid samples [4, 8] and design strategic bidders

to increase the utility with specific bidding strategies. The distri-

bution reporting model [31] states that in incentive compatibility

auctions, bidders can improve their utility by bidding according to

a specific "fake distribution". When the seller employs the Myerson

Net learning mechanism, adversarial learning strategies maximize

the utility of strategic bidders [24], particularly when other partici-

pants in the system adopt truthful bidding strategies [26].

The primary aim of this paper is to formulate an approach that

enables bidders to automatically learn bidding strategies. Our ap-

proach diverges from previous research on strategic bidding, such

as ZIP (Zero Intelligence Plus) [2, 7], which focused on the learn-

ing process of bidders through repeated interactions within static

auction mechanisms. In our work, we depict the repeated auction

environment as a multiagent reinforcement learning system, where

both the seller and individual bidders are treated as agents. Each
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agent employs independent algorithms to acquire strategies. Al-

though bidders engage in repeated auctions for the same item, it is

important to note that the value distribution and strategies of agents

can evolve over time. This requires bidders to predict changes in

the mechanism induced by bidding strategies and learn how to bid

in response to a dynamic mechanism.

Opponent modeling research offers robust approaches to strat-

egy learning within the aforementioned system, where all agents

independently update their strategies with strategy prediction [36].

By anticipating transitions in the opponent’s strategy, an agent can

acquire strategies that yield superior rewards in repeated games. In

particular, LOLA (Learning with Opponent-Learning Awareness)

[11] is the first algorithm capable of achieving cooperation in the

Prisoner’s Dilemma game through independent opponent modeling

processes for each agent. Subsequent research, COLA (Consistency

in Opponent-Learning Awareness) [34], states that the system will

reach the target equilibrium when the predictions of the opponent’s

strategy (lookahead rate) maintain consistency.

In this paper, we provide a complete definition of automatic

bidding for bidders in online auctions and design algorithms with

theoretical support. Our contributions are summarized as follows:

1) We model the behavior of the seller and bidders in repeated

auctions as an induced game in which all agents learn strategies in

repeated interactions. We adopt Myerson Net as the seller strategy

and design an automatic bidding strategy for bidders. Our objective

is that this MARL system converges to an equilibrium in which

bidders have optimal utility. 2) We propose Bid Net to represent

the strategies learned by the bidders. The network structure of

the Bid Net has the advantage of satisfying the IR (individual ra-

tionality) and accurate gradient propagation with NeuralSort. We

illustrate that the Bid Net is an efficient improvement of the simple

linear strategy through experiment. 3) We design the PG (pseudo-

gradient) algorithm based on the opponent modeling method. The

PG algorithm is an automatic bidding method for updating the bid-

ding strategy based on the prediction of changes in the parameters

of the auction mechanism. We prove that when a bidder employs

the PG algorithm, it can learn the optimal bidding strategy under

the current prior-dependent mechanism. When all bidders adopt

the PG algorithm, the system will converge to the Nash equilibrium

of the induced game.

In our experiments, we compare the Bid Net with the previously

used linear shading bidding strategy [24]. The results show that

Bid Net can learn utility-maximizing bidding strategies, even in

environments where the parameters of the seller’s mechanism are

constantly updated through learning. In an experiment in which all

bidders use the same algorithm learning strategy, the results show

that only the PG algorithm can stably learn the target equilibrium

strategy of the induced game and maximize the average utility of

the bidders. To illustrate the effectiveness of our automatic bidding

algorithm, we test it in different environmental settings and with

various opponent strategies. The PG algorithm achieves higher

utility when other bidders use a static or dynamic strategy and can

be applied to arbitrary environmental parameter settings. These

experiments illustrate the applicability of our automatic bidding

algorithm to online repeated auctions in terms of effectiveness and

generalizability.

2 NOTATION AND BACKGROUND
In this paper, we focus on single-item auctions as defined in [15].

The values of the 𝑛 bidders are drawn from their value distributions

𝑣𝑖 ∼ 𝐹𝑖 . 𝐹 = 𝐹1 × · · · × 𝐹𝑛 is the joint distribution. For each bidder

𝑖 , its bidding function is denoted as 𝐵𝑖 , with the actual bid being

𝑏𝑖 = 𝐵𝑖 (𝑣𝑖 ). We use 𝜋𝑖 to denote the strategy of bidder 𝑖 , when

it comes from the learnable parameters. An example of a bidding

strategy is the linear shading strategy, expressed as 𝐵𝑖 (𝑣𝑖 ) = 𝛼𝑖 · 𝑣𝑖 .
The truthful bidding strategy 𝐵𝑖 (𝑣𝑖 ) = 𝑣𝑖 is the simplest strategy.

We use 𝑀 to represent the seller’s mechanism, which com-

prises both the allocation rule ®𝑎 and the payment rule ®𝑝 . The
seller receives joint bids

®𝑏 = (𝑏1, · · · , 𝑏𝑛) and generates allocation

®𝑎( ®𝑏) = (𝑎1 ( ®𝑏), · · · , 𝑎𝑛 ( ®𝑏)) and payment ®𝑝 ( ®𝑏) = (𝑝1 ( ®𝑏), · · · , 𝑝𝑛 ( ®𝑏))
according to its mechanism ( ®𝑎, ®𝑝) = 𝑀 ( ®𝑏, 𝜃 ). Here, 𝜃 signifies the

strategy parameter for the seller. In the context of the traditional

first-price auction, the item is allocated to the bidder with the

highest bid, denoted as (𝑎𝑖 = 1 if 𝑏𝑖 = max( ®𝑏) , otherwise 0), and
the payment equals the bid of the winning bidder, indicated as

(𝑝𝑖 = 𝑏𝑖 if 𝑎𝑖 = 1 , otherwise 0).

2.1 Traditional Prior-dependent Auction
Themain results of auction theory have been consolidated in [20]. In

addition, [22] discussed the representation and reasoning processes

associated with auctions. For prior-independent mechanisms, such

as fisrt-price and second-price auctions, the seller’s revenue is the

same when the bidders respond optimally [23]. This has inspired

research on prior-dependent auctions with IC constraint, where

the truthful bidding strategy is the dominant strategy for bidders.

The well-known revenue-maximizingmechanism is theMyerson

auction [23], which is the optimal mechanism that satisfies the

IC constraint under the premise that the value of the bidders is

public information. In the Myerson auction, each bidder’s value 𝑣𝑖
is transformed into a virtual value𝑤𝑖 = 𝑔𝑖 (𝑣𝑖 ), after which a second-
price auction with a reserve price of 0 is conducted using the set of

virtual values ®𝑤 . The virtual value function 𝑔𝑖 is determined by the

distribution 𝐹𝑖 and the density function 𝑓𝑖 associated with 𝑣𝑖 .

𝑔𝑖 (𝑣𝑖 ) = 𝑣𝑖 −
1 − 𝐹𝑖 (𝑣𝑖 )
𝑓𝑖 (𝑣𝑖 )

.

In fact, the virtual value function 𝑔𝑖 plays a key role in determining

both the allocation and payment of the mechanism.

At this point, it is assumed that the joint value distribution of

the other bidders is represented as 𝐹−𝑖 . Consequently, the utility of

the bidder 𝑖 can be expressed as:

𝑈𝑖 ( ®𝑎, ®𝑝, 𝑣𝑖 ) =
∫
𝐹−𝑖

[𝑎𝑖 (𝑏𝑖 , 𝐵−𝑖 (𝑣−𝑖 ))𝑣𝑖−𝑝𝑖 (𝑏𝑖 , 𝐵−𝑖 (𝑣−𝑖 ))] 𝑓−𝑖 (𝑣−𝑖 )𝑑𝑣−𝑖 .

Here, 𝑑𝑣−𝑖 = 𝑑𝑣1𝑑𝑣2 · · ·𝑑𝑣𝑖−1𝑑𝑣𝑖+1 · · ·𝑑𝑣𝑛 and 𝑏𝑖 = 𝐵𝑖 (𝑣𝑖 ). In the

context of single-item auctions, it is necessary for the allocation to

be 0 or 1. As a result, the above equation can be reformulated as:

𝑈𝑖 ( ®𝑎, ®𝑝, 𝑣𝑖 ) =
∫
𝐹−𝑖
I(𝑎𝑖 = 1) [𝑣𝑖 − 𝑝𝑖 (𝑏𝑖 , 𝐵−𝑖 (𝑣−𝑖 ))] 𝑓−𝑖 (𝑣−𝑖 )𝑑𝑣−𝑖 ,

Here, I denotes the indicator function, and 𝑎𝑖 = 𝑎𝑖 (𝑏𝑖 , 𝐵−𝑖 (𝑣−𝑖 )).
The seller’s revenue can be defined as:

𝑅( ®𝑎, ®𝑝, 𝐹 ) =
∫
𝐹

∑︁
𝑖=1· · ·𝑛

𝑝𝑖 ( ®𝑏) 𝑑𝑣1 · · ·𝑑𝑣𝑛 .
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Figure 1: The learned virtual value function after 200 itera-
tions of Myerson-Net in single-item, two-bidder auction. The
line labeled truth indicates that it is derived from Myerson’s
Lemma, and the line labeled Myerson-Net is from the output
of the network. The revenue curve represents the revenue of
the mechanism in the learning process.

The Myerson mechanism has been proven to satisfy the IC con-

straint, indicating that the truthful bidding strategy 𝐵𝑖 (𝑣𝑖 ) = 𝑣𝑖 is
the optimal response to the Myerson mechanism [23].

We consider the standard setting as an example. There are two

bidders and their value distribution is identical, represented as

𝑣𝑖 ∼ 𝑈 [0, 1]. If the seller employs the Myerson mechanism, the

virtual value function is 𝑔𝑖 (𝑣𝑖 ) = 2𝑣𝑖 − 1. In response, both bidders

choose to adopt the truthful bidding strategy as their best response

to the Myerson mechanism. The expected utility of each bidder

is
1

12
and the expected revenue of the seller is

5

12
. However, if the

seller adopts the first-price or second-price auction instead, the

revenue generated is only
1

3
.

2.2 Online Repeated Auction and the Myerson
Net

In this paper, online auction means the auctions held in online mar-

ketplaces, such as bidding searches on advertising platforms [6]. In

this context, bidders frequently participate in multiple auctions for

identical or similar items. This circumstance presents opportunities

to implement prior-dependent mechanisms, even when access to

the value distribution of bidders is limited. The seller can establish a

mechanism that adheres to the IC constraints, requiring bidders to

employ a truthful bidding strategy. By collecting bid samples from

repeated auctions, the seller can estimate the value distribution of

the bidders, denoted as ®𝐹 , and subsequently adjust the mechanism

parameters to converge towards the optimal Myerson auction.

Myerson Net [9] presents a technique that leverages a mono-

tonely increasing parameterized neural network𝐺 to acquire virtual

value functions ®𝑔 and derive optimal auction mechanisms.

Definition 1 (Myerson Net). For joint bids ®𝑏 = (𝑏1, 𝑏2, · · · , 𝑏𝑛)
from bidders 𝑖 = 1 · · ·𝑛, the seller first transforms each bid into a
virtual value𝑤𝑖 = 𝐺𝑖 (𝑏𝑖 , 𝜃 ) (𝜃 is the network parameter). The item
is then assigned to the bidder with the highest positive virtual value.
Payment is the minimum bid required for the winner to win:

𝑝𝑖 = I(𝑎𝑖 = 1)𝑏∗𝑖 , 𝑏∗𝑖 = argmin
𝑏𝑖

[𝐺𝑖 (𝑏𝑖 , 𝜃 ) = max
𝑗∈1· · ·𝑛

𝐺 𝑗 (𝑏 𝑗 , 𝜃 ) > 0] .

From the definition we can obtain the following property.

Theorem 2.1. Myerson Net satisfies the IC constraints in single-
item auctions. For a Myerson Net 𝑀 , we add a strictly increasing

function 𝑄 to each virtual value function 𝐺 ′
𝑖
= 𝑄 ◦𝐺𝑖 that satisfies

𝐺𝑖 (𝑏𝑖 ) = 0 ⇐⇒ 𝑄 ◦𝐺𝑖 (𝑏𝑖 ) = 0 to obtain another mechanism 𝑀′.
Then𝑀′ and𝑀 have the same allocation and payment rule.

The proof of Theorem 2.1 is given in the supplementary metarial.

We use � to represent the two different networks with the same

allocation and payment mechanism. Since the Myerson Net satisfies

the IC constraints, we can assume that the bidders will adopt the

truthful bidding strategy. Using the real bids obtained in repeated

auctions, the seller updates the network parameter 𝜃 with the objec-

tive of maximizing revenue 𝑟 , which results in the convergence of

the virtual value function𝐺 to the optimal function ®𝑔 corresponding
to the true value distribution of the bidders. This suggests that the

system converges to the revenue-maximizing Myerson mechanism

when bidders bid truthfully in this environment.

Figure 1 provides an example of the application in the standard

setting. The figure on the left shows that the seller has learned the

optimal virtual value function in 200 iterations. The figure on the

right shows the change in revenue in the learning iterations. We

can see that the seller using Myerson Net obtains optimal revenue,

which exceeds the prior-independent mechanism.

2.3 Strategic Bidder and the Induced Game
Myerson Net provides an approach as a revenue-maximizing mech-

anism for online repeated auctions. Since Myerson Net satisfies the

incentive compatibility constraint, the optimal strategy for bidders

in a single auction round is the truthful bidding strategy. However,

some previous studies have found that bidders in repeated auctions

have more efficient strategies, which requires them to bid according

to some specific distribution instead of true value distribution. Al-

though bidders initially lose some utility under the IC-constrained

mechanism, untruthful bids can lead the seller to misestimate the

value distribution and increase bidders’ long-term utility.

Tang’s research [31] defines the induced game of auction when

the seller adjusts the mechanism according to the bids. As an exam-

ple, the Myerson mechanism induces a game in which the players

contain only bidders. In this game, bidders adopt specific bidding

strategies rather than the truthful strategy, and their utility is de-

rived from the Myerson mechanism that runs based on bids.

Definition 2 (Induced game of Myerson mechanism𝑀). The in-
duced game is represented as (𝑁,𝐴, ®𝑈 ), where 𝑁 = {1, · · · , 𝑛} is
the set of bidders, 𝐴 = {𝐵1, · · · , 𝐵𝑛} is the bidding function set,
and ®𝑈 = (𝑈1, · · · ,𝑈𝑛) is the utility function. Given the joint ac-
tion (𝐵1, · · · , 𝐵𝑛), the utility is derived by applying the Myerson
mechanism𝑀 with the assumption 𝐵𝑖 (𝑣𝑖 ) = 𝑣𝑖 .

We present the partial payment matrix for the induced game of

the single-item, two-bidder auction in the supplementary material

and we have the following property.

Theorem 2.2. We assume that there are two bidders and their
value distribution is𝑈 [0, 1] (standard setting), the induced game is as
detailed in Definition 2. For strategic bidders with a limited strategy
space 𝐵(𝑣) = 𝛼𝑣 (referred to as the linear shading strategy space), the
Nash equilibrium of the induced game yields 𝐵𝑖 (𝑣𝑖 ) = 5

14
𝑣𝑖 . However,

in cases where bidders have access to arbitrary monotone increas-
ing strategies, a Nash equilibrium emerges with bidding strategies
represented as 𝐵𝑖 (𝑣𝑖 ) = 𝑣𝑖+1

4
.
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Figure 2: The network for strategic bidder (Bid Net), which
takes the value of the bidder as input. NeuralSort is a differ-
entiable sorting operator that can output an approximate
sorted sequence while preserving the gradient.

For the two bidders in the standard setting, the expected utility

in each round of the auction when they employ a truthful bidding

strategy is
1

12
. When their bidding strategy is 𝐵𝑖 (𝑣𝑖 ) = 𝑣𝑖+1

4
, the ex-

pected utility is
1

6
. This suggests that strategic bidders can increase

utility through specific bidding strategies in the induced game. The

proof of Theorem 2.2 is given in the supplementary material.

3 MUITIAGENT REINFORCEMENT LEARNING
BASED AUTOMATIC BIDDING METHOD

To analyze the equilibrium and learning process of the induced

game in Section 2.3, we introduce the environment where the seller

and strategic bidders learn strategies in a repeated auction for

maximum reward. We assume that the value distribution of the

bidders is unavailable to the seller. Bidders and the seller will update

their strategies based on the results of each auction round and the

corresponding rewards. The above single-item auction is repeated

until the strategies of all agents converge.

3.1 Bid Net
From Theorem 2.2 we can see that bidders learn different equilibria

when their strategy space is limited. Since an optimal mechanism

can be learned through strategy networks, we consider setting up

a similar structure for the strategy learning of bidders.

If we consider static strategies, then for the game induced by the

Myerson auction, the Nash equilibrium in the standard setting is:

𝐵𝑖 (𝑣𝑖 ) =
𝑣𝑖 + 1

4

, 𝑔𝑖 (𝐵𝑖 (𝑣𝑖 )) =
1

2

𝑣𝑖 , 𝑖 ∈ {1, 2}.

However, its drawback is that 𝐵(𝑣) ≤ 𝑣 does not always hold. This
equilibrium strategy may lead to negative utilities for bidders with

𝑣 < 1

3
. When bidders do not have access to the dynamic mechanism

update method, adopting a bidding strategy that does not satisfy

IR (individual rationality) may reduce the bidders’ expected utility.

Therefore, we require that the bidding strategy obtained by the

network satisfies the following requirements:

1) 𝐵(𝑣) is increasing function about 𝑣 ,

2) 𝑣 ≥ 𝐵(𝑣) ≥ 0.

We propose a parametric network (Bid Net) to represent the

bidder’s strategy. The network first inputs the received values 𝑣𝑖
from the distribution 𝐹𝑖 into a multilayer perceptron. Monotonic

outputs 𝑏∗
𝑖
= 𝐵∗

𝑖
(𝑣𝑖 ) are combined with regularization constraints

𝐵𝑖 (𝑣𝑖 ) = Min[𝐵∗
𝑖
(𝑣𝑖 ), 𝑣𝑖 ]. This ensures that the output of the net-

work meets both of these requirements. Since Bid Net training

requires the use of a gradient propagation algorithm and the op-

erators associated with sorting (𝑀𝑖𝑛,𝑀𝑎𝑥, 𝑆𝑜𝑟𝑡) cannot propagate
the gradient, we use NeuralSort [13, 18] as an approximation in our

network. The structure of the Bid Net is shown in Figure 2.

3.2 Modeling Repeated Auction as an MARL
System

We assume that bidders and the seller interact in an infinitely re-

peated auction with identical items and update their strategies after

each auction round. At the moment 𝑡 , the seller first announces the

current parameter 𝜃 of the mechanism. The strategy of the bidders

®𝜋 and the seller 𝜃 determines the utility 𝑢𝑡
𝑖
= 𝑎𝑡

𝑖
𝑣𝑡
𝑖
− 𝑝𝑡

𝑖
and the

revenue 𝑟𝑡 of this auction round. For strategic bidders and the seller,

the observations they receive are the joint bidding
®𝑏, mechanism pa-

rameter 𝜃 , and their rewards (𝑢𝑡
𝑖
or 𝑟𝑡 ). When the value distribution

is constant, the joint bidding distribution
®𝑏 is directly determined

by the joint strategy ®𝜋 . Therefore, we use strategies ®𝜋 instead of

bids
®𝑏 to represent the action of the bidders in repeated auctions.

Based on the observations and the reward maximization objec-

tives, the agents will update their strategy for the next auction

round. We usually assume that the strategic bidder adjusts the

previous strategy based on observation:

𝜋𝑡+1𝑖 = 𝜋𝑡𝑖 + Δ𝜋𝑡𝑖 (𝜋
𝑡
−𝑖 , 𝜃

𝑡 , 𝑢𝑡𝑖 ).

This forms an MARL system when both the seller and bidders

update their strategies through learning. The convergence of the

strategy in repeated auctions is consistent with the equilibrium

of the induced game, where the bidding strategy and mechanism

reach a stable point. Our goal is to provide a learning algorithm

for bidders that maximizes their utility as the system converges.

When the bidder 𝑖 is a naive learner [11], it will maximize its utility

assuming that the other agent strategies remain unchanged:

𝜋𝑡+1𝑖 = argmax

𝜋𝑖

𝑈𝑖 (𝜋𝑖 , 𝜋𝑡−𝑖 , 𝜃
𝑡 ) .

We can design gradient-based methods with learning rate 𝛾 :

Δ𝜋𝑡𝑖 = 𝛾 · ∇𝜋𝑡
𝑖
𝑈𝑖 (𝜋𝑡𝑖 , 𝜋

𝑡
−𝑖 , 𝜃

𝑡 ) .

While the naive learner can only engage in inefficient learning

process, the opponent modeling approach is able to improve the re-

ward of agents by predicting the change in the opponent’s strategy

and selecting the corresponding best response:

𝜋𝑡+1𝑖 = argmax

𝜋𝑖

𝑈𝑖 (𝜋𝑖 , 𝜋𝑡−𝑖 + Δ𝜋−𝑖 , 𝜃𝑡 + Δ ˆ𝜃 ) .

A simple assumption in [11] is that the other agents are naive

learners with lookahead rate 𝛾 ′, which means that:

Δ𝜋𝑡𝑗 = 𝛾
′ · ∇𝜋𝑡

𝑗
𝑈 𝑗 (𝜋𝑡𝑗 , 𝜋

𝑡
− 𝑗 , 𝜃

𝑡 ), ∀𝑗 ≠ 𝑖 and Δ ˆ𝜃𝑡 = 𝛾 ′ · ∇𝜃𝑡𝑅(𝜃𝑡 , ®𝜋𝑡 ) .

In the following sections, we will specifically discuss the design

of the opponent modeling algorithm applicable to repeated auctions

and propose our strategy learning method in this MARL system.
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Figure 3: Gradient propagation direction of the repeated auc-
tion induced MARL system. The red line represents a direct
gradient, which comes from the revenue and utility. The blue
line represents the indirect gradient, which comes from the
impact of the bidder’s strategy on other players.

3.3 Opponent Modeling Based Automatic
Bidding Method

In this section, we introduce the automatic bidding method for the

MARL system in Section 3.2. Since the seller and other bidders also

update their strategies, agents must consider both the current utility

and the impact on subsequent states when evaluating the strategy

𝜋𝑖 . We adopt representation similar to RL (reinforcement learning)

and use 𝑄𝑖 to denote the utility expectation of the strategy for the

bidder 𝑖 , then we have the following:

𝑄𝑖 (𝜋𝑡𝑖 ) = 𝑈𝑖 (𝜋
𝑡
𝑖 , 𝜋

𝑡
−𝑖 , 𝜃

𝑡 ) + 𝜆max

𝜋𝑖
𝑄𝑖 (𝜋𝑖 , 𝜋𝑡+1−𝑖 , 𝜃

𝑡+1),

where 𝜆 is the discount factor.

For the agent 𝑖 who needs to choose a strategy at moment 𝑡 , the

information available is historical observations before moment 𝑡 .

Therefore, it is difficult to obtain unbiased estimates of 𝑄𝑖 . A direct

approximation is �̂�𝑖 = 𝑈𝑖 (𝜋𝑡𝑖 , 𝜋
𝑡
−𝑖 , 𝜃

𝑡 ), which means that the bidder

assumes that the subsequent strategy of other agents (𝜋𝑡+1−𝑖 , 𝜃
𝑡+1

) is

not relevant to its strategy 𝜋𝑡
𝑖
. Then its choice of action at the next

moment will be based on the prediction of the opponent’s action:

𝜋𝑡𝑖 = argmax

𝜋𝑖

𝑈𝑖 (𝜋𝑖 , 𝜋𝑡−𝑖 , ˆ𝜃
𝑡 ),

𝜋𝑡−𝑖 = 𝜋
𝑡
−𝑖 (𝜋

𝑡−1
𝑖 , 𝜋𝑡−1−𝑖 , 𝜃

𝑡−1), ˆ𝜃𝑡 = ˆ𝜃𝑡 (𝜋𝑡−1𝑖 , 𝜋𝑡−1−𝑖 , 𝜃
𝑡−1).

For the naive learner, it will assume that the strategies of other

agents remain unchanged:

𝜋𝑡−𝑖 = 𝜋
𝑡−1
−𝑖 ,

ˆ𝜃𝑡 = 𝜃𝑡−1 .

Then its gradient update direction for the strategy will be:

∇𝜋𝑡−1
𝑖
𝑈𝑖 (𝜋𝑡−1𝑖 , 𝜋𝑡−1−𝑖 , 𝜃

𝑡−1).

More accurate estimations for 𝑈𝑖 (𝜋𝑡𝑖 , 𝜋
𝑡
−𝑖 , 𝜃

𝑡 ) usually require

first-order approximations:

𝑈𝑖 (𝜋𝑖 ,𝜋−𝑖 + Δ𝜋−𝑖 , 𝜃 + Δ ˆ𝜃 )

≈ 𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 + Δ𝜋−𝑖 , 𝜃 ) + (Δ ˆ𝜃 )⊤∇𝜃𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 + Δ𝜋−𝑖 , 𝜃 )
≈ 𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 , 𝜃 ) + (Δ𝜋−𝑖 )⊤∇𝜋−𝑖𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 , 𝜃 )

+ (Δ ˆ𝜃 )⊤∇𝜃 [𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 , 𝜃 ) + (Δ𝜋−𝑖 )⊤∇𝜋−𝑖𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 , 𝜃 )] .

We can obtain different predictions for (Δ𝜋−𝑖 ,Δ ˆ𝜃 ) with oppo-

nent modeling methods. The LOLA [11] algorithm assumes that

the opponent is a naive learner, which means Δ ˆ𝜃 = 𝜂 · ∇𝜃𝑅( ®𝜋, 𝜃 ).
Assuming that the opponent is a LOLA learner leads to high-order

LOLA (HOLA). Similar opponent modeling algorithms include SOS

(stable opponent shaping) [16], COLA (consistent learning with op-

ponent learning awareness) [34], and others, which effectively learn

equilibrium with higher rewards in different game environments.

COLA [34] points out that the effectiveness of opponent model-

ing algorithms depends on the consistency of the lookahead rate of

all agents. This means that agents need to choose strategy-update

approaches with consistency to ensure the convergence of the sys-

tem. However, we have discussed earlier the asymmetry of the

repeated auction environment: bidders have private information

(value function) that allows them to adopt specific strategies to im-

prove utility. Training strategies directly using opponent modeling

algorithms does not maximize the utility of bidders.

Figure 3 shows the direction of propagation of the network pa-

rameter gradient for bidders and the seller in the MARL environ-

ment of repeated auctions. We illustrate the necessity of computing

the indirect gradient represented by the blue dashed line in the

figure in repeated auctions by proving the following property.

Theorem 3.1. If all bidders use only the gradient which comes
directly from the utility to update the strategy under the Myerson
Net of the seller, their gradient-based strategy updating will converge
to the truthful bidding strategy 𝐵𝑖 (𝑣𝑖 ) = 𝑣𝑖 . The stable state of the
system is where all bidders bidding truthfully.

The proof of Theorem 3.1 is given in the supplementary material.

This Theorem indicates that the strategy network of bidder must

be trained with the indirect gradient, which requires predicting the

impact of bidding strategies on mechanism changes. In order to

obtain a more accurate prediction of the 𝑄𝑖 function for bidders,

we estimate max

𝜋𝑖
𝑄𝑖 (𝜋𝑖 , 𝜋𝑡+1−𝑖 , 𝜃

𝑡+1) by modeling Δ𝜋𝑡+1−𝑖 ,Δ
ˆ𝜃𝑡+1 as

functions of 𝜋𝑡
𝑖
:

Δ𝜋𝑡+1−𝑖 = Δ𝜋𝑡+1−𝑖 (𝜋𝑡𝑖 ), Δ ˆ𝜃𝑡+1 = Δ ˆ𝜃𝑡+1 (𝜋𝑡𝑖 ) .

Then we have:

�̂�𝑖 (𝜋𝑡𝑖 , 𝜋
𝑡+1
𝑖 , · · · ) =𝑈𝑖 (𝜋𝑡𝑖 , 𝜋

𝑡
−𝑖 ,

ˆ𝜃𝑡 ) + 𝜆𝑈𝑖 (𝜋𝑡+1𝑖 , 𝜋𝑡−𝑖 + Δ𝜋−𝑖 (𝜋𝑡𝑖 ), ˆ𝜃
𝑡

+Δ ˆ𝜃 (𝜋𝑡𝑖 )) + 𝜆
2 · · · .

The convergence of the system in the repeated auction is equiv-

alent to the convergence of the strategies of each agent. We can

simplify the above equation by assuming that 𝜋𝑡
𝑖
= 𝜋𝑡+1

𝑖
= · · · and

then it will become:

�̂�𝑖 (𝜋𝑡𝑖 ) = 𝑈𝑖 (𝜋
𝑡
𝑖 , 𝜋

𝑡
−𝑖 ,

ˆ𝜃𝑡 )+
∞∑︁
𝑘=1

𝜆𝑘𝑈𝑖 (𝜋𝑡𝑖 , 𝜋
𝑡
−𝑖+Δ

𝑘𝜋−𝑖 (𝜋𝑡𝑖 ), ˆ𝜃
𝑡+Δ𝑘 ˆ𝜃 (𝜋𝑡𝑖 )),

where Δ𝑘𝜋−𝑖 (𝜋𝑡𝑖 ) means the prediction of 𝜋−𝑖 after 𝑘 updates.

We use 𝜋−𝑖 (𝜋𝑡𝑖 ), ˆ𝜃 (𝜋
𝑡
𝑖
) to represent the strategy of other agents

when the system converges, which means that:

𝜋−𝑖 (𝜋𝑡𝑖 ) = 𝜋
𝑡
−𝑖 + Δ∞𝜋−𝑖 (𝜋𝑡𝑖 ), ˆ𝜃 (𝜋𝑡𝑖 ) = ˆ𝜃𝑡 + Δ∞ ˆ𝜃 (𝜋𝑡𝑖 ).

We can always require that the system converge in finite time by

periodic reducing the step size of the strategy updating. Assuming
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Algorithm 1: Inner loop process of pseudo-gradient algo-

rithm

Input: Initial Parameters 𝜋𝑡−1
𝑖

,Δ𝜋𝑖 , 𝜋
𝑡−1
−𝑖 , 𝜃

𝑡−1
; termination step

𝑇 ; lookahead rate 𝜂′.
1: Generate Myerson Net with parameter 𝜃∗ which statisfies

𝑀 (𝜃∗) � 𝑀 (𝜃𝑡−1), and set 𝜋∗−𝑖 = 𝜋
𝑡−1
−𝑖

2: for 𝑘 := 1, · · · ,𝑇 do
3: Generate sample 𝑆𝑘 = (𝑏1, · · · , 𝑏𝑛) with (𝜋𝑡−1

𝑖
+ Δ𝜋𝑖 , 𝜋

∗
−𝑖 )

4: Compute gradient ∇𝜃𝑅(𝜃∗, 𝑆𝑘 )
5: 𝜃∗ = 𝜃∗ + 𝜂′∇𝜃𝑅(𝜃∗, 𝑆𝑘 ), 𝜋∗−𝑖 = 𝜋

∗
−𝑖

6: end for
Output: ˆ𝜃𝑡 = 𝜃∗, 𝜋𝑡−𝑖 = 𝜋

∗
−𝑖

that the system converges after 𝑇 updates, we have:

�̂� (𝜋𝑡𝑖 ) =
𝑇−1∑︁
𝑘=0

𝑈 𝑘+𝑡
𝑖 + (𝜆𝑇 + 𝜆𝑇+1 + · · · )𝑈𝑖 (𝜋𝑡𝑖 , 𝜋−𝑖 (𝜋

𝑡
𝑖 ), ˆ𝜃 (𝜋

𝑡
𝑖 )).

When 𝜆 → 1, the second item will be sufficiently larger than the

first. Then we have:

�̂� (𝜋𝑡𝑖 ) ≈ (𝜆𝑇 + 𝜆𝑇+1 + · · · )𝑈𝑖 (𝜋𝑡𝑖 , 𝜋−𝑖 (𝜋
𝑡
𝑖 ), ˆ𝜃 (𝜋

𝑡
𝑖 )) .

Thus, the strategy selection function of the agent is as follows:

𝜋𝑡𝑖 = argmax

𝜋𝑖

𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 (𝜋𝑡𝑖 ), ˆ𝜃 (𝜋
𝑡
𝑖 )) .

When a single bidder’s strategy is fixed in a repeated auction, the

strategy updates of other bidders and the seller are synchronized

and will affect each other. The convergence result is determined by

the algorithm used by these agents. To avoid discussing the possi-

bility of different stable points in the system, we assume that the

strategy updates of other agents are independent and the bidders’

strategies change slowly Δ𝜋−𝑖 (𝜋𝑡𝑖 ) ≈ 0. We found this assump-

tion to be valid in our experiments, for predicting the strategies of

other agents under the condition that their private information is

unknown will lead to a large bias.

We refer to this process (calculating 𝜋−𝑖 (𝜋𝑡𝑖 ), ˆ𝜃 (𝜋
𝑡
𝑖
) using 𝜋𝑡

𝑖
) as

the inner loop part of the algorithm. When the seller adopts Myer-

son Net as the mechanism, its strategy updating process according

to historical bids is similar to a naive learner. We can simulate this

process in the inner loop through the Myerson Net by constraining

the bidder strategies to 𝜋𝑡
𝑖
, 𝜋𝑡−1−𝑖 . The complete procedure for the

inner loop is given in Algorithm 1.

Based on the strategy predictions of the other agents obtained

from the inner loop, we can derive the bidding strategy that maxi-

mizes the expected utility. To avoid the instability caused by rapid

strategy changes, we restrict the step size by |Δ𝜋𝑖 | ≤ 𝑑 . Then our

goal is to solve the optimization problem:

max

|Δ𝜋𝑖 | ≤𝑑
𝑈𝑖 (𝜋𝑖 + Δ𝜋𝑖 , 𝜋−𝑖 (𝜋𝑖 + Δ𝜋𝑖 ), ˆ𝜃 (𝜋𝑖 + Δ𝜋𝑖 ))

Since the parameters in the optimization objective contain the

output of the inner loop, it is difficult to calculate the strategy

gradient directly. We give the approximate calculation based on

the PG (pseudo-gradient) by defining the pseudo-gradient obtained

Algorithm 2: Pseudo-gradient algorithm

Input: Initial Parameters 𝜋0
𝑖
, 𝜋0−𝑖 , 𝜃

0
, termination step 𝑇 ′

,

learning rate 𝜂, number of inner loop 𝐾 ′
and constant 𝑠 and 𝑙 .

1: for 𝑡 := 1, · · · ,𝑇 ′ do
2: Strategic bidder process: read the output of 𝑡 − 1 from

environment and set 𝜋−𝑖 = 𝜋𝑡−1−𝑖 ,
ˆ𝜃 = 𝜃𝑡−1

3: for 𝑗 := 1, · · · , 𝐾 ′ do
4: Randomly generate Δ𝜋

𝑗
𝑖
, which satisfies

⟨Δ𝜋 𝑗
𝑖
,Δ𝜋

𝑗0
𝑖
⟩ < 𝑙 (∀𝑗0 ∈ { 𝑗 − 1, · · · , 𝑗 − 𝑠})

5: Using the inner loop process to obtain
ˆ𝜃 (Δ𝜋 𝑗

𝑖
)

6: end for
7: 𝑔𝑟𝑎𝑑 (𝜋𝑡−1

𝑖
,Δ𝜋

𝑗
𝑖
) = 𝑈𝑖 (𝜋𝑡−1

𝑖
+Δ𝜋 𝑗

𝑖
,𝜋−𝑖 , ˆ𝜃 )−𝑈𝑖 (𝜋𝑡−1

𝑖
,𝜋−𝑖 ,𝜃 )

|Δ𝜋 𝑗

𝑖
|

8: 𝑔𝑟𝑎𝑑∗ (𝜋𝑡−1
𝑖

) = argmax

Δ𝜋 𝑗

𝑖

[𝑔𝑟𝑎𝑑 (𝜋𝑡−1
𝑖

,Δ𝜋
𝑗
𝑖
) | 𝑔𝑟𝑎𝑑 (·, ·) > 0]

9: 𝜋𝑡
𝑖
= 𝜋𝑡−1

𝑖
+ 𝜂 · 𝑔𝑟𝑎𝑑∗ (𝜋𝑡−1

𝑖
)

10: Other bidders and the seller update their strategies

according to their algorithms

11: end for
Output: (𝜋𝑇 ′

𝑖
, 𝜋𝑇

′
−𝑖 , 𝜃

𝑇 ′ )

from Δ𝜋𝑖 as:

𝑔𝑟𝑎𝑑 (𝜋𝑖 ,Δ𝜋𝑖 ) =
𝑈𝑖 (𝜋𝑖 + Δ𝜋𝑖 , 𝜋−𝑖 + Δ𝜋−𝑖 (Δ𝜋𝑖 ), 𝜃 + Δ ˆ𝜃 (Δ𝜋𝑖 ))

|Δ𝜋𝑖 |

−𝑈𝑖 (𝜋𝑖 , 𝜋−𝑖 , 𝜃 )|Δ𝜋𝑖 |
.

From the definition we can see that, given the strategy update

Δ𝜋𝑖 , it is possible to calculate the pseudo-gradients with the inner

loop. For the algorithm to choose an update step that is close to

the direction of the true gradient, we generate a set of different

directions of Δ𝜋𝑖 and select the positive gradient with the largest

absolute value from all pseudo-gradients as the update direction

of the Bid Net. The complete procedure for the PG algorithm is

given in Algorithm 2. We want the algorithm to converge to the

equilibrium of the repeated auction-induced game. For a single-item

Myerson auction that induces a game among bidders, we give proof

of the convergence in the supplementary material.

Theorem 3.2. Assuming that other bidders use static strategies
𝜋−𝑖 , ˆ𝜃 (Δ𝜋𝑖 ) obtained from the inner loop belonging to the optimal
mechanisms and 𝐾 ′ → ∞ in algorithm 2, the strategic bidder using
the PG algorithm will converge to the strategy with optimal utility.
When all bidders adopt the PG algorithm, the equilibrium of the
Myerson auction-induced game is the only stable point of the system.

In our experiments, we find that the result of the algorithm

satisfies this theorem even if the inner loop does not converge and

𝐾 ′
is finite. Our algorithm PG converges to the equilibrium of all

the games induced by the auction, even in multiple-bidders settings.

4 EXPERIMENTS AND DISCUSSION
Our experiment consists of three parts. 1) Experiment in the stan-

dard setting for Bid Net employed by individual bidders. We com-

pare the learned Bid Net strategies with linear shading strategies
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(a) Bid Net with RL training
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(b) Linear strategy with PG training
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The revenue and utility of system with different algorithms

(c) Bid Net with PG training

Figure 4: The utility of a strategic bidder in scenarios where another bidder consistently employs the truthful bidding strategy,
while the seller’s strategy is derived from the Myerson Net. The solid red line represents the utility of the strategic bidder, while
the solid yellow line represents the revenue of the seller. The dashed line labeled "Truthful Myerson" represents the theoretical
utility and revenue when the strategic bidder adheres to the truthful bidding strategy. The dashed line labeled "Theresholded
Myerson" illustrates the theoretical utility and revenue when the strategic bidder employs the optimal bidding strategy.
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Figure 5: The strategy parameters 𝛼𝑖 of strategic bidders during the learning process. Both bidders are designated strategic
bidders and employ the same algorithm. The seller strategy is derived from Myerson Net. The line labeled "truth" represents
the truthful strategy 𝛼𝑖 = 1, and the line labeled "equilibrium" represents the equilibrium strategy of the induced game 𝛼𝑖 = 5

14
.

[24]. In this configuration, another bidder consistently employs the

truthful bidding strategy, while the seller’s strategy is derived from

the Myerson Net. 2) Experiment with the PG algorithm. As part of

an ablation experiment, we utilize linear shading networks to rep-

resent bidder strategies. We compare the PG algorithm with other

opponent modeling algorithms and evaluate performance using

metrics such as the average utility of the bidders and the deviation

of strategy from equilibrium in the induced game. 3) Experiments

in diverse environments with varied settings and opponent mod-

els. We expand our experiment to include various environments

that feature distinct settings and opponent models. Our aim is to

demonstrate the effectiveness of the combination of PG algorithm

and Bid Net in optimizing bidders’ utility in online auctions.

4.1 Experiment for Bid Net
We compare linear shading strategies and Bid Net, which is trained

using PG and RL algorithms. Our evaluation takes place in the

standard setting, with another bidder consistently employing the

truthful bidding strategy. The results are given in Figure 4.

From the figure, we can see that the network trained using RL

converges to the truthful bidding strategy. The linear shading strat-

egy trained through PG improves the utility of the strategic bidder,

but does not approach the optimal strategy. The strategy produced

by Bid Net trained with the PG algorithm closely approximates

the optimal strategy. This experiment underscores the efficiency of

Bid Net in accurately representing bidding strategies, while linear

shading strategies do not contain the optimal strategy. The gap

between the seller’s revenue and the theoretical value may arise

from the fact that we set a very small reserve price.

4.2 Experiment for PG Algorithm
We compare the utility of agents with different strategy learning

algorithms. The environment is the standard setting, and all bid-

ders employ the linear shading strategy 𝐵𝑖 (𝑣𝑖 ) = 𝛼𝑖𝑣𝑖 . In this en-

vironment, both bidders will adopt the same algorithm to learn

the strategy. At the end of each auction round 𝑡 , bidders and the

seller will observe the strategies (𝛼𝑡
𝑖
, 𝛼𝑡−𝑖 , 𝜃

𝑡 ) and the corresponding
rewards (𝑢𝑡

𝑖
, 𝑢𝑡−𝑖 , 𝑟

𝑡 ). Subsequently, the seller updates the mecha-

nism in accordance with the Myerson Net, while the bidders adjust
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Setting RL LOLA SOS PG (linear shading) PG (Bid Net)

① 𝐵2 (𝑣2) = 𝑣2
𝑣1 ∼ 𝑈 [0, 1], 𝑣2 ∼ 𝑈 [0, 1] 0.09 0.15 0.12 0.18 0.20

② 𝐵2 (𝑣2) = 0.25𝑣2 + 0.25

𝑣1 ∼ 𝑈 [0, 1], 𝑣2 ∼ 𝑈 [0, 1] 0.09 0.07 0.10 0.12 0.16

③ 𝐵2 (𝑣2) = 𝑣2
𝑣1 ∼ 𝑈 [0, 2], 𝑣2 ∼ 𝑈 [0, 1] 0.22 0.37 0.33 0.33 0.46

④ 𝐵2 (𝑣2) = 𝑣2
𝑣1 ∼ ( 𝑛

𝑁
+ 1) ·𝑈 [0, 1], 𝑣2 ∼ 𝑈 [0, 1] 0.16 0.26 0.09 0.27 0.33

⑤ 𝐵2 (𝑣2) = 𝑣2, 𝐵3 (𝑣3) = 𝑣3
𝑣1 ∼ 𝑈 [0, 1], 𝑣2 ∼ 𝑈 [0, 1], 𝑣3 ∼ 𝑈 [0, 1] 0.06 0.09 0.08 0.04 0.11

⑥ 𝐵2 (𝑣2) ∼ LOLA updating

𝑣1 ∼ 𝑈 [0, 1], 𝑣2 ∼ 𝑈 [0, 1] 0.12 0.16 0.16 0.20 0.31

⑦ 𝐵2 (𝑣2) ∼ SOS updating

𝑣1 ∼ 𝑈 [0, 1], 𝑣2 ∼ 𝑈 [0, 1] 0.12 0.13 0.15 0.18 0.32

Table 1: The utility of strategic bidder across different opponent strategies and environments. Row labels signify the environment
and strategy of the other bidders. The column labels indicate the algorithms employed by the strategic bidder. 𝑛 and 𝑁 denote
the number of current rollouts and the total number of rollouts.

Figure 6: The average utility for the strategic bidders.

their strategies based on their respective learning algorithms. An

equilibrium of the above system is 𝛼1 = 𝛼2 =
5

14
.

We compare the PG algorithmwith opponent modeling and equi-

librium solving algorithms (RL, LOLA [11], LA [37], CO [21], CGD

[28], LSS [19], SOS [16]) in the aforementioned environment. Fig-

ure 5 illustrates the evolution of agent strategy parameters during

training. The results demonstrate that the majority of algorithms

converge towards the truthful bidding strategy, aligning with the

conclusion in Theorem 3.1. Algorithms that incorporate opponent

predictions improve utility but display a degree of instability. No-

tably, the PG algorithm’s training results closely approximate the

Nash equilibrium strategy. The slight deviation from equilibrium

could be attributed to the implementation of a sufficiently small

reserve price. The average utility of various agent systems is shown

in Figure 6, where the PG algorithm attains the highest average

utility in the automated bidding task, consistent with Theorem 3.2.

4.3 Experiments with Different Opponents and
Environment Settings

We conducted a series of experiments within diverse environments

and with varying opponent strategies. Experiments in which other

bidders use static strategies include: ① Standard setting with
a truthful bidding opponent. In this scenario, another bidder

consistently employs the truthful bidding strategy. ② Standard set-
ting with a Nash equilibrium opponent. In this setup, another

bidder adheres to the Nash equilibrium bidding strategy. ③ Asym-
metric value distribution. Here, the private value distribution

of bidders exhibits asymmetry. ④ Dynamic value distribution.
In this experiment, the value distribution function of the strategic

bidder evolves over time. ⑤ Single-item three-bidders auction.
This experiment extends to a scenario with more than two bidders.

Experiments involving dynamic strategies employed by other

bidders encompass: ⑥ LOLA algorithm opponent. Here, another
bidder updates its strategy using the LOLA algorithm. ⑦ SOS algo-
rithm opponent. In this case, another bidder adjusts its strategy

using the SOS algorithm. In the two sets of experiments described

above, the opponent bidder uses linear shading strategies.

We evaluate the effectiveness of the algorithms to improve the

utility of the strategic bidder after 400 iterations. The results are

presented in Table 1. The algorithms used for comparison (RL,

LOLA, SOS) are experimented with both Bid Net and linear shading

strategies, and the results in the table are taken from the better of

the two. We see that the Bid Net trained with PG always maximizes

the utility of the strategic bidder. More details of the setting and

figures of the experiment are given in the supplementary material.

5 CONCLUSION
In this study, we have developed an automatic bidding approach

for bidders in repeated auctions. We introduce the Bid Net as a

representation of bidding strategies, and we have proposed the PG

algorithm to train this network. We have shown the effectiveness of

PG in learning optimal responses when faced with static opponents,

as well as its convergence to induced equilibriums when all agents

adopt PG simultaneously. Through a series of experiments, we have

highlighted the superiority of Bid Net over the linear shading func-

tion and showcased the efficacy of the PG algorithm by comparing

it with other opponent modeling algorithms. PG has proven to

significantly enhance the utility of strategic bidders in varying en-

vironments and with diverse strategies employed by other agents.

We hope that this work will contribute to more research on strategic

bidders in auctions and automatic bidding.
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