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ABSTRACT

We study the rational verification problem for multi-agent systems
in a setting where agents have quantitative probabilistic goals. We
use concurrent stochastic games to model multi-agent systems and
assume players desire to maximise the probability of satisfying
their goals, specified using Linear Temporal Logic (LTL). The main
decision problem in this setting is whether a given LTL formula is
almost surely satisfied on some pure Nash equilibrium of a given
game. We prove that this problem is undecidable in the general case,
and then characterise the complexity of this problem under various
restrictions on strategies. We also study the problem of deciding
whether a given strategy profile is a Nash equilibrium in a given
game and show that, unlike the previous verification problem, this
question is decidable for several common strategy models.
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1 INTRODUCTION

Over the past decade, there has been much concern about issues
surrounding the safety and reliability of AI systems. This appre-
hension has prompted renewed research into the verification of AI
systems – demonstrating formally that they behave as intended.
In the context of multi-agent systems, one important approach
to this problem is that of rational verification, whereby we aim to
formally verify which temporal logic properties will hold in the
system under the assumption that component agents behave strate-
gically and rationally (i.e., game-theoretically) in pursuit of their
goals [17, 19, 20, 22, 23, 35]. A standard idea in rational verification
is to represent agent preferences by associating with each agent a
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temporal logical goal formula that it desires to see satisfied. Players
are assumed to seek the satisfaction of their goal formulae, taking
into account the fact that other players are acting in pursuit of
theirs, and that other players are also strategic actors. Note that
the use of temporal logic as a framework for representing both
agent goals and queries about possible system behaviours leads to
commonalities – intuitive and formal – with both the model check-
ing paradigm for automated verification [4, 13] and the automated
synthesis paradigm for concurrent and reactive systems [30].

Rational verification has been studied in a wide range of settings,
relating both to the semantic model used to represent a multi-agent
system, and to the way in which agent preferences are modelled;
see [1] for a comprehensive survey. For example, rational verifica-
tion has been studied for multi-agent systems modelled as determin-
istic and nondeterministic games, for agent preferences modelled
as temporal logic and 𝜔-regular goals, for players having access
to either infinite or finite memory strategies, for systems with per-
fect and imperfect information, and very recently for systems with
agents’ goals accounting for qualitative probabilistic behaviour [18].
In this paper, we are also interested in systems with probabilistic be-
haviour, and consider the more general – and often more intractable
– setting with quantitative probabilistic behaviour [4].

More specifically, we study the rational verification problem in
a setting where players have quantitative probabilistic goals. As
our basic semantic model, we use concurrent stochastic games,
which can capture probabilistic and nondeterministic behaviours
in multi-agent settings. In our model, agents in the system seek to
maximise the probability of satisfying their objectives, specified as
Linear Temporal Logic (LTL) formulae – a quantitative probabilistic
reasoning – while, the central question is whether a given LTL
specification is almost surely satisfied in some pure strategy Nash
equilibrium of a given game – a qualitative probabilistic condition
of satisfaction, which we refer to as the E-Nash problem. We show
that, in the most general setting without restrictions on the memory
of players’ strategies, this problem is undecidable. Given this, we
then seek to address the following questions: (1) Can we identify
decidable restrictions on the different strategy models? (2) What is
the computational complexity of the E-Nash problem under these
restrictions? (3) How does the complexity of E-Nash compare to
the related problem of checking whether a given strategy profile is
a Nash equilibrium in a given game, i.e., theMembership problem?
We investigate the computational complexity of both the E-Nash
andMembership problems under various natural restrictions on
the form of strategies permitted, including memoryless, 𝑘-bounded,
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Model / Problem E-Nash Membership
General Undecidable 2EXPTIME
Myopic Undecidable 2EXPTIME
𝑘-bounded PSPACE PSPACE
Memoryless PSPACE PSPACE
Table 1: Summary of complexity results.

and myopic strategies. For E-Nash, some of the restrictions we
consider give rise to decidability. In the case of Membership, we
show that it is decidable in every strategy model we study. Table 1
summarises our main complexity results. For all decidable problems
we consider, we give matching upper and lower complexity bounds.

The paper is organised as follows. In Section 2, we give some
preliminary definitions and in Sections 3–5, we present the main
technical results in the paper, beginning with our main result and
then investigating various restrictions on strategies. In Section 6, we
finish with some conclusions and a summary of the most relevant
related work.

2 PRELIMINARIES

For a finite set 𝑋 , a (rational) probability distribution over 𝑋 is
a function Pr : 𝑋 → [0, 1] ∩ Q such that Σ𝑥∈𝑋 Pr(𝑥) = 1. We
write D(𝑋 ) for the set of probability distributions on 𝑋 . For a tuple
®𝑥 = (𝑥1, . . . , 𝑥𝑛), we write proj𝑖 ( ®𝑥) to refer to 𝑥𝑖 , i.e., to its 𝑖-th
projection or component; thus, we have proj𝑖 ( ®𝑥) = 𝑥𝑖 .

Markov Chains: A Markov chain (MC) is a tuple C = (𝑆, 𝑠𝜄 , tr, 𝜆),
where 𝑆 is a set of states, 𝑠𝜄 is the initial state, tr : 𝑆 → D(𝑆) is a
function that assigns a probability distribution (on 𝑆) to all states
𝑠 ∈ 𝑆 , and 𝜆 : 𝑆 → 2AP is a labelling function mapping each state
to a set of propositions taken from a set of atomic propositions AP.
The set of infinite paths in C starting from 𝑠 ∈ 𝑆 is Paths(C, 𝑠) =
{𝜋 = 𝑠0𝑠1 · · · ∈ 𝑆𝜔 : 𝑠0 = 𝑠,∀𝑘 ∈ N. tr(𝑠𝑘 , 𝑠𝑘+1) > 0}. The set
of all infinite paths in C is Paths(C) = ⋃

𝑠∈𝑆 Paths(C, 𝑠). The set
of finite paths starting from 𝑠 ∈ 𝑆 is defined as Fpaths(C, 𝑠) =

{𝜋 = 𝑠0 · · · 𝑠𝑛 ∈ 𝑆+ : ∃𝜋 ∈ Paths(C) . 𝜋𝜋 ∈ Paths(C, 𝑠)} and
Fpaths(C) =

⋃
𝑠∈𝑆 Fpaths(C, 𝑠). The cylinder set of a finite path

𝜋 ∈ Fpaths(C) is defined by Cyl(𝜋) = {𝜋 ∈ Paths(C) : ∃�̃� ∈
Paths(C) . 𝜋 = 𝜋�̃� ∈ Paths(C)}. Following [34], we define the
probability distribution over the space of infinite paths, as usual,
via cylinder sets. We denote this probability distribution over the
set of infinite paths beginning from some state 𝑠 by Pr𝑠C . We also
write PrC when 𝑠 is clear from the context.

Concurrent Stochastic Game Arenas: A concurrent stochastic

game arena (CSGA) is a tuple A = (N, St, 𝑠0, (Ac𝑖 )𝑖∈N, tr), where N
is a finite set of players, St is a finite set of states, 𝑠0 is the initial
state, Ac𝑖 is a finite set of actions for each 𝑖 ∈ N. With each player 𝑖
and each state 𝑠 ∈ St, we associate a non-empty set Ac𝑖 (𝑠) of
available actions that, intuitively, 𝑖 can perform when in state 𝑠 .
When all players have fixed their actions, we have an action profile
®𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ ®Ac = Ac1 × · · · × Ac𝑛 , also referred to as a
direction. A direction ®𝑎 is available at 𝑠 ∈ St if for all 𝑖 ∈ N we have
𝑎𝑖 ∈ Ac𝑖 (𝑠). We write ®Ac(𝑠) for the set of available directions at
state 𝑠 . For a given set of players 𝐴 ⊆ N and an action profile ®𝑎, we
let ®𝑎𝐴 and ®𝑎−𝐴 be two tuples of actions, respectively, one for each

player in 𝐴 and one for each player in N \𝐴. For two directions ®𝑎
and ®𝑎′, we write ( ®𝑎𝐴, ®𝑎′−𝐴) for the direction where the actions for
players in 𝐴 are taken from ®𝑎 and the actions for players in N \𝐴
are taken from ®𝑎′. Finally, tr : St × ®Ac → D(St) is a probabilistic
transition function.

A sequential stochastic game arena (SSGA) is a special case of
CSGA, given by S = (N, St, 𝑠0, (Ac𝑖 )𝑖∈N, tr), which differs from a
CSGA only in the available actions of players Ac𝑖 (𝑠) in states 𝑠 ∈ St.
In a SSGA, each state 𝑠 ∈ St “belongs” to a player; that is, if 𝑠 belongs
to player 𝑖 , then Ac𝑖 (𝑠) ≠ ∅ and |Ac𝑗 (𝑠) | = 1 for all 𝑗 ≠ 𝑖 . Thus,
only one player may have multiple actions enabled at each 𝑠 ∈ St.

Linear Temporal Logic: Linear Temporal Logic (LTL) [29] extends
propositional logic with two operators, ⃝ (“next”) and U (“until”),
that can express properties of paths. The LTL syntax is defined using
a set AP of propositional variables and the following grammar:

𝜑 ::= ⊤ | 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⃝𝜑 | 𝜑 U𝜑

where 𝑝 ∈ AP. Other connectives are defined in terms of ¬ and ∨ in
the usual way. Two key derived LTL operators are 3 (“eventually”)
and 2 (“always”), which are defined in terms of U as follows:
3𝜑 ≡ ⊤U𝜑 and 2𝜑 ≡ ¬3¬𝜑 .

We interpret formulae of LTL with respect to triples (𝜋, 𝑡, 𝜆),
where 𝜋 ∈ St𝜔 is a path, 𝑡 ∈ N is a temporal index in 𝜋 such that
𝜋𝑡 is the 𝑡 th state in 𝜋 , and 𝜆 : St → 2AP is a labelling function that
indicates which propositional variables are true in every state. The
semantics of LTL is given by the following rules:

(𝜋, 𝑡, 𝜆) |= ⊤
(𝜋, 𝑡, 𝜆) |= 𝑝 iff 𝑝 ∈ 𝜆 (𝜋𝑡 )
(𝜋, 𝑡, 𝜆) |= ¬𝜑 iff it is not the case that (𝜋, 𝑡, 𝜆) |= 𝜑

(𝜋, 𝑡, 𝜆) |= 𝜑 ∨𝜓 iff (𝜋, 𝑡, 𝜆) |= 𝜑 or (𝜋, 𝑡, 𝜆) |= 𝜓

(𝜋, 𝑡, 𝜆) |= ⃝𝜑 iff (𝜋, 𝑡 + 1, 𝜆) |= 𝜑

(𝜋, 𝑡, 𝜆) |= 𝜑 U𝜓 iff there is some 𝑡 ′ ≥ 𝑡 :
(
(𝜋, 𝑡 ′, 𝜆) |= 𝜓

and for all 𝑡 ≤ 𝑡 ′′ < 𝑡 ′ : (𝜋, 𝑡 ′′, 𝜆) |= 𝜑
)

If (𝜋, 0, 𝜆) |= 𝜑 , we write 𝜋 |= 𝜑 and say that 𝜋 satisfies 𝜑 .

Concurrent Stochastic Games: A concurrent stochastic game

(CSG) is a tuple G = (A, (𝛾𝑖 )𝑖∈N, 𝜆), where A is a CSGA, 𝛾𝑖 is an
LTL formula that represents the goal of player 𝑖 , and 𝜆 : St → 2AP
is a labelling function. A game is played by each player 𝑖 selecting
a strategy 𝜎𝑖 that defines how choices are made over time. A strat-
egy for player 𝑖 can be understood as a function 𝜎𝑖 : St+ → Ac𝑖
that assigns to every non-empty finite sequence of states an ac-
tion to be chosen from player 𝑖’s set of actions. Strategies may
require memory to remember the game’s history. When a strategy
remembers a finite amount of information about the past, we call it
finite-memory.

We model strategies as transducers. Formally, a strategy in G for
player 𝑖 is a transducer 𝜎𝑖 = (𝑄𝑖 , 𝑞

0
𝑖
, 𝛿𝑖 , 𝜏𝑖 ), where 𝑄𝑖 is a (possibly

infinite) set of internal states, 𝑞0
𝑖
is the initial state, 𝛿𝑖 : 𝑄𝑖 × St ×

®Ac → 𝑄𝑖 is a deterministic internal transition function, and 𝜏𝑖 :
𝑄𝑖 × St ×𝐴𝑐𝑖 → {0, 1} a deterministic action function that selects
a single action (with probability 1) from Ac𝑖 such that for every
𝑞𝑖 ∈ 𝑄𝑖 , 𝑠 ∈ St, and 𝑎 ∈ 𝐴𝑐𝑖 , we have that 𝜏𝑖 (𝑞𝑖 , 𝑠, 𝑎) = 1 only if
𝑎 ∈ Ac𝑖 (𝑠). Let Σ𝑖 be the set of strategies for player 𝑖 . A strategy is
memoryless if there exists a transducer encoding the strategy with
|𝑄𝑖 | = 1, i.e., the choice of action only depends on the current state
of the game, and finite-memory if |𝑄𝑖 | < ∞.
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Once every player 𝑖 has selected a strategy 𝜎𝑖 , we have a strategy
profile ®𝜎 = (𝜎1, . . . , 𝜎𝑛). We write ®𝜎𝐴 and ®𝜎−𝐴 to denote a strategy
profile for players in 𝐴 ⊆ N and 𝑁 \𝐴, respectively. We also write
( ®𝜎𝐴, ®𝜎′−𝐴) to denote the strategy profile where the strategies for
players in 𝐴 are taken from ®𝜎 , and the strategies for players in
N \ 𝐴 are taken from ®𝜎′. Observe that a strategy profile ®𝜎 for a
game G resolves nondeterminism in the underlying A. That is, a
strategy profile ®𝜎 for a game G induces an MC C®𝜎 = (𝑆, 𝑠𝜄 , tr′, 𝜆),
where 𝑆 = St ×>

𝑖∈N𝑄𝑖 , 𝑠𝜄 = (𝑠0, 𝑞01, . . . , 𝑞
0
𝑛), and for 𝑣, 𝑣 ′ ∈ 𝑆, the

probability tr′ (𝑣, 𝑣 ′) is given by∑︁
®𝑎∈ ®Ac

∏
𝑎𝑖 ∈ ®𝑎

𝜏𝑖 (proj𝑞𝑖 (𝑣), proj𝑠 (𝑣), 𝑎𝑖 ) · tr(proj𝑠 (𝑣), ®𝑎, proj𝑠 (𝑣
′)) .

For a given game G, strategy profile ®𝜎 , and LTL formula 𝜑 , let

Pr(G, ®𝜎, 𝜑) = Pr
C®𝜎

({𝜋 ∈ Paths(C®𝜎 , 𝑠
0) : 𝜋 |= 𝜑})

denote the probability that 𝜑 is satisfied in G under ®𝜎 . An LTL
formula𝜑 is said to be satisfiedwith probability 𝑝 , written ®𝜎 |=𝑝 𝜑 , if
and only if Pr(G, ®𝜎, 𝜑) = 𝑝 . Likewise, 𝜑 is satisfied with probability
at least (similarly, at most) 𝑝 , written ®𝜎 |=[𝑝,1] 𝜑 (®𝜎 |=[0,𝑝 ] 𝜑), iff
Pr(G, ®𝜎, 𝜑) ≥ 𝑝 (Pr(G, ®𝜎, 𝜑) ≤ 𝑝). Finally, 𝜑 is satisfied almost

surely, written ®𝜎 |= AS(𝜑), when we have ®𝜎 |=1 𝜑 , and with non-

zero probability, when we have ®𝜎 |=(0,1] 𝜑 . Given a game G and a
path 𝜋 ∈ Paths(C®𝜎 , 𝑠

0), the utility of each player 𝑖 ∈ N is 1 if 𝜋 |= 𝛾𝑖
and 0 otherwise. With this, the expected utility of a player 𝑖 ∈ N
under a strategy profile ®𝜎 is simply defined 𝑢𝑖 ( ®𝜎) = Pr(G, ®𝜎,𝛾𝑖 ).
Finally, a sequential stochastic game (SSG) G = (S, (𝛾𝑖 )𝑖∈N, 𝜆) is a
special case of CSG where the underlying arena is an SSGA.

Rational Verification:We now introduce the rational verification
problems, in particular, with respect to (pure-strategy) Nash equi-

libria [27]. Formally, given a game G, a strategy profile ®𝜎 is a Nash
equilibrium of G if, for every player 𝑖 and strategy 𝜎′

𝑖
∈ Σ𝑖 , we have

𝑢𝑖 ( ®𝜎) ≥ 𝑢𝑖 ( ®𝜎−𝑖 , 𝜎′𝑖 ),

where ( ®𝜎−𝑖 , 𝜎′𝑖 ) is (𝜎1, . . . , 𝜎𝑖−1, 𝜎
′
𝑖
, 𝜎𝑖+1, . . . , 𝜎𝑛), the strategy pro-

file where the strategy of player 𝑖 in ®𝜎 is replaced by 𝜎′
𝑖
. Let NE(G)

denote the set of Nash equilibria of G. With these definitions in
place, we can define the two key decision problems relating to
rational verification, in particular for a global LTL property almost-
surely satisfied.

Membership
Given: CSG G, strategy profile ®𝜎 .
Question: Is it the case that ®𝜎 ∈ NE(G)?
E-Nash
Given: CSG G, LTL formula 𝜑 .
Question: Is it the case that

∃®𝜎 ∈ NE(G) . ®𝜎 |= AS(𝜑)?

Finally, the intuitively simpler question of asking whether a CSG
G has any Nash equilibria, typically known as the Non-Emptiness
problem in the rational verification literature, can be solved simply
by checking if (G,⊤) ∈ E-Nash. Note that, in general, the ques-
tion of Non-Emptiness may be non-trivial, as the fact that in our
setting strategies can have infinite memory (and thus there are
infinitely many of them) means we cannot straightforwardly apply

𝑠0

{𝑝,𝑞}

𝑠1{𝑝 } 𝑠2 {𝑞}

𝑠3

{𝑟 }

𝑠4

{}

(𝑎,𝑏 ) (𝑏, 𝑎)

(𝑏,𝑏 )

1
3

1
3

1
3

(𝑎, 𝑎)
®Ac \ (𝑐, ∗) ®Ac \ (𝑐, ∗)

®Ac

(𝑐, ∗) (𝑐, ∗)

®Ac

Figure 1: CSGA for Example 1. Edges that are not labelled

with probabilities represent deterministic transitions, and

(𝑐, ∗) represents the set of action profiles {(𝑐, 𝑎), (𝑐, 𝑏)}.

Nash’s theorem. This is a well-known fact in the rational verifica-
tion literature, which is made even more critical in the quantitative
probabilistic setting where optimal behaviour, even for very simple
games, may require infinite memory strategies.

Special Cases: Our first main result shows that E-Nash is unde-
cidable in the general case (Theorem 1). Given this, we consider
different restrictions on the set of permitted strategies. Firstly, we
study the case where players are restricted to using pure memo-
ryless strategies. Secondly, we consider a setting where players
are restricted to using polynomially bounded strategies. Formally,
given a CSG G, a strategy 𝜎𝑖 for a player 𝑖 is said to be 𝑘-bounded,
for a given 𝑘 ≥ 0, if |𝑄𝑖 | ≤ |St|𝑘 , that is, the number of states
encoding 𝜎𝑖 is bounded from above by |St|𝑘 . This restriction can
be thought of as a “bounded rationality” assumption. Finally, we
consider the case of myopic strategies, which captures imperfect
information in that any player cannot condition their behaviour
on the actions taken by other players, but only on the history so
far. More precisely, a strategy 𝜎𝑖 = (𝑄𝑖 , 𝑞

0
𝑖
, 𝛿𝑖 , 𝜏𝑖 ) is myopic if its

internal transition function can be defined as 𝛿𝑖 : 𝑄𝑖 × St → 𝑄𝑖 .
With this, we let Σ𝑀

𝑖
denote the set of memoryless strategies, Σ𝑌

𝑖

the set of myopic strategies, and Σ𝑘
𝑖
the set of k-bounded strategies

for player 𝑖 . For 𝑋 ∈ {𝑀,𝑌, 𝑘}, let Σ𝑋 =
∏

𝑖∈𝑁 Σ𝑋
𝑖
. We can define

Nash equilibria with respect to each of these restricted strategy sets
in the obvious manner.

Example 1. Consider a game G1 whose CSGA is depicted in Exam-

ple 1. G1 consists of two players, where player 1’s action set is {𝑎, 𝑏, 𝑐}
and player 2’s action set is {𝑎, 𝑏}. Actions 𝑎 and 𝑏 are available to

both players at all states, and action 𝑐 is available to player 1 only at

states 𝑠1 and 𝑠2. Now suppose that player 1’s LTL goal is given by

𝛾1 = (2 (𝑝 ↔ 𝑞)) ∨ (3𝑟 ),
and that player 2’s LTL goal is given by

𝛾2 = (32(𝑞 ∧ ¬𝑝)) ∨ (32(𝑝 ∧ ¬𝑞)) ∨ (⃝𝑟 ∧2(𝑝 ↔ 𝑞)).
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We observe that G1 has two memoryless Nash equilibria by consid-

ering cases for all possible moves at 𝑠0. If (𝑎, 𝑏) is played at 𝑠0, then
player 1 has a beneficial deviation to (𝑏, 𝑏); this improves their odds of

winning from 0 to 1
3 . If (𝑏, 𝑎) is played, then player 1 has a beneficial

deviation to (𝑎, 𝑎). If (𝑎, 𝑎) is played at 𝑠0 and player 1 threatens to
play 𝑐 at 𝑠1 and 𝑠2, then player 1’s expected utility is 1, player 2’s ex-
pected utility is 0, and neither player has a beneficial deviation, so this

is a Nash equilibrium. Similarly, the scenario where (𝑏, 𝑏) is played
at 𝑠0 and player 1 plays 𝑐 at both 𝑠1 and 𝑠2 is a Nash equilibrium,

where player 1’s expected utility is
1
3 , and player 2’s expected utility

is 0. Thus, we see that there are Nash equilibria for which players’

goals may be satisfied qualitatively (almost surely) and others for

which satisfaction is quantitative (with probability between 0 and 1).
Moreover, permitting 𝑘-bounded strategies (with 𝑘 = 1) allows for an-
other Nash equilibrium ®𝜎 in which both players’ expected utilities are

1
3 . Under ®𝜎 , both players select (𝑏, 𝑏) in the first round. This reaches

𝑠1, 𝑠2, 𝑠3 each with probability
1
3 . From 𝑠3, after returning to 𝑠0, both

players switch to playing (𝑎, 𝑎) indefinitely. From 𝑠1 and 𝑠2, player
1 plays 𝑐 from then onwards. This acts as a threat of punishment if

player 2 ever decides to deviate. Such a strategy also constitutes a

myopic Nash equilibrium, as the only information both players need

is the history of states visited at any point in the game.

3 UNDECIDABILITY

We now present our main result of the paper: in the general case, the
rational verification problem for sequential stochastic multiplayer
games (SSGs) is undecidable. Chatterjee et. al. [12] showed that
any SSG has a Nash equilibrium, and gave an algorithm for com-
puting one. Indeed, their algorithm may compute an equilibrium
where all players lose almost surely (i.e. receive expected payoff
0), while there exist other equilibria where all players win almost
surely (i.e. receive expected payoff 1). When one considers “supe-
rior” Nash equilibria where one or more players win almost surely,
the existence problem becomes undecidable [33] for SSGs. The
undecidability result (Remark 4.11, [33]) with reachability objec-
tives for SSGs required 9 players. A subsequent paper [15] claimed
to improve this result to 5 players. However, this latter proof has
some issues, which we discuss in the Appendix. We now show that
undecidability can be achieved with 3 players.

Theorem 1. E-Nash is undecidable in sequential stochastic games

with 3 players.

Proof. We show undecidability by (i) constructing an SSG G
with 3 players and an LTL formula 𝜑 and (ii) reducing the non-
halting problem of two counter machines to the existence of a Nash
equilibrium ®𝜎 such that ®𝜎 |= AS(𝜑) in G.

A two-counter machine M consists of a sequence of instruc-
tions 𝜄0, . . . , 𝜄𝑚 where each instruction is one of the following: (i)
“inc( 𝑗 ); goto 𝑘” (increment counter 𝑗 by 1 and go to instruction 𝑘);
(ii) “zero( 𝑗 ) ? goto 𝑘 : dec( 𝑗 ); goto 𝑙” (if the value of counter 𝑗 is
zero, go to instruction 𝑘 ; otherwise, decrement counter 𝑗 by one
and go to instruction 𝑙 ); (iii) “halt” (Halt). Here 𝑗 ranges over the
counters 1, 2, 𝑘 ≠ 𝑙 range over the instructions 0, . . . ,𝑚. A con-
figuration of M is a triple 𝐶 = (𝑖, 𝑐1, 𝑐2) ∈ {0, . . . ,𝑚} × N × N,
where 𝑖 is the current instruction and 𝑐 𝑗 is the current value of
counter 𝑗 . A configuration 𝐶′ is the successor of configuration 𝐶 ,

denoted by𝐶 ⊢ 𝐶′, if it results from𝐶 by executing instruction 𝜄𝑖 ; a
configuration 𝐶 = (𝑖, 𝑐1, 𝑐2) with 𝜄𝑖 = “halt” has no successor con-
figuration. The computation of M is the unique maximal sequence
𝜌 = 𝜌 (0)𝜌 (1) . . . such that 𝜌 (0) ⊢ 𝜌 (1) ⊢ . . . and 𝜌 (0) = (0, 0, 0)
(the initial configuration). Note that 𝜌 is either infinite, or it ends in
a configuration𝐶 = (𝑖, 𝑐1, 𝑐2) such that 𝜄𝑖 = “halt”. The halting prob-
lem is to decide, given a machine M, whether M reaches “halt”. It
is well-known that the halting problem, as well as its dual, whether
“halt”will not be reached, are both undecidable [25].

Description of G. Given an instance of a two counter machine
with instructions 𝜄1, . . . , 𝜄𝑚 , we construct a SSG G with 3 players
A, B, and 0. This game is depicted in Figure 2 where the players
A, B, and 0 are depicted as red, yellow, and green states. For any
player 𝑖 ∈ {𝐴, 𝐵} and state 𝑠 ,Ac𝑖 (𝑠) = {𝑐𝑜, 𝑒𝑥} represents choices to
continue or exit the game. Likewise, at any player 0 state 𝑠 , Ac0 (𝑠)=
{𝑛𝑒𝑥𝑡, 𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐, 𝑝𝑟𝑜𝑏, 𝑙𝑜𝑜𝑝, 𝑠𝑡𝑔𝑡}. The actions 𝑛𝑒𝑥𝑡, 𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐 repre-
sent proceeding with the next instruction and choosing a zero or
decrement instruction in the gadgets 𝐼𝑡

𝑖,𝛾
, while the actions 𝑙𝑜𝑜𝑝, 𝑠𝑡𝑔𝑡

represent the choice of taking the loop or going straight from the
player 0 state labelled 𝑔 in 𝐺𝑎𝑑𝑡

𝑗,𝛾
gadget. Square states are termi-

nal; that is, they have a self-loop, and these could be of any player.
Let 𝐴𝑃 = {𝐴, 𝐵,ℎ𝑎𝑙𝑡, 𝑎𝑡 , 𝑏𝑡 , 𝑝𝑡 , 𝑞𝑡 , 𝑔 | 𝑡 ∈ {0, 1}, 𝑗 ∈ {1, 2}}. The
labelling function 𝜆 is defined with respect to 𝐴𝑃 , and labels are
shown adjacent to their corresponding state nodes in Figure 2. If
no such label is present next to a state, its label is ∅.
If 𝜄1, . . . , 𝜄𝑚∈{inc( 𝑗), dec( 𝑗), zero( 𝑗) | 𝑗=1, 2}, let Γ = {init, ℎ𝑎𝑙𝑡} ∪
{𝜄1, . . . , 𝜄𝑚}. For each 𝑖 ∈ {1, . . . ,𝑚}, 𝛾 ∈ Γ, 𝑗 ∈ {1, 2} and 𝑡 ∈ {0, 1},
the game G has gadgets 𝐸𝑥𝑖𝑡, 𝑀𝑎𝑖𝑛𝑡

𝑖,𝛾
,𝐺𝑎𝑑𝑡

𝑗,𝛾
, 𝐼𝑡
𝑖,𝛾
. We begin with

the gadget𝑀𝑎𝑖𝑛01,init, with player 𝐴 state 𝑣0. (G, 𝑣0) represents the
initialised game starting at 𝑣0.

LTL Goals for players. Define 𝜑𝑡
𝐴
as 2(𝑎𝑡 ⇒ 3𝑝𝑡 ), for 𝑡 ∈ {0, 1}.

𝜑𝑡
𝐴
captures reaching terminal states marked 𝑝𝑡 , given any history

ℎ𝑣 where 𝑣 is labelled 𝑎𝑡 (𝑣 is in the𝑀𝑎𝑖𝑛𝑡 gadget). Likewise, define
𝜑𝑡
𝐵
to be2(𝑏𝑡 ⇒ 3𝑞𝑡 ). The goals of players 0, A, and B respectively

are 𝛾0 = 2¬ℎ𝑎𝑙𝑡 , 𝛾𝐴 =
∧

𝑡 ∈{0,1} 𝜑
𝑡
𝐴
, and 𝛾𝐵 =

∧
𝑡 ∈{0,1} 𝜑

𝑡
𝐵
.

Let 𝜑 = 2¬ℎ𝑎𝑙𝑡 . We answer E-Nash on the constructed SSG G
with respect to the formula 𝜑 ; is there is a Nash equilibrium ®𝜎 such
that ®𝜎 |= AS(𝜑)? Note that ®𝜎 |= AS(𝜑) iff ®𝜎 is a strategy profile
where player 0 wins almost-surely.

Key Elements of the Reduction. Given a sequence of instructions
𝛾0, 𝛾1, . . . , ofM, let 𝑣0 ≺ ℎ1𝑣1 ≺ ℎ2𝑣2 ≺ . . . , be the unique sequence
of consecutive histories visited under a strategy profile ®𝜎 such that
𝑣𝑘 is the player 𝐴 state labelled 𝑎𝑘 𝑚𝑜𝑑2 in a 𝑀𝑎𝑖𝑛𝑘 𝑚𝑜𝑑 2

𝑖,𝛾𝑘
gadget

corresponding to the instruction 𝛾𝑘 , and ℎ1, ℎ2, · · · ∈ 𝑉 ∗, such that
𝑃𝑟 (G, ®𝜎,3𝑣𝑘 𝑚𝑜𝑑 2) > 0 for each 𝑘 ∈ N (that is, we can reach
𝑣𝑘 𝑚𝑜𝑑 2).

Define 𝑎𝑛 = 𝑃𝑟 (G, ®𝜎, 𝜑𝑛 𝑚𝑜𝑑 2
𝐴

) as the expected utility under ®𝜎
for satisfying 𝜑𝑛 𝑚𝑜𝑑 2

𝐴
(that is, reaching a terminal state labelled

𝑝𝑛 𝑚𝑜𝑑 2) given a history ℎ𝑣𝑛 . Likewise, let 𝑏𝑛 = 𝑃𝑟 (G, ®𝜎, 𝜑𝑛 𝑚𝑜𝑑 2
𝐵

)
be the expected utility under ®𝜎 for satisfying 𝜑𝑛 𝑚𝑜𝑑 2

𝐵
(that is,

reaching a terminal state labelled 𝑞𝑛 𝑚𝑜𝑑 2) given a history ℎ𝑣𝑛 .
For 𝑡∈{0, 1}, define 𝜂𝑡=¬ ⃝ 𝐴 U 𝑝𝑡 and 𝜑

𝑡,1−𝑡
𝐴

= 2(𝑎𝑡 ⇒ {𝜂𝑡 ∨
[¬⃝𝐴 U (𝑎1−𝑡 ∧𝜂𝑡 )]}) for 𝑡∈{0, 1}. 𝜑𝑡,1−𝑡𝐴

captures the property of
reaching a terminal state marked 𝑝𝑡 , over the instructions 𝛾𝑛, 𝛾𝑛+1.
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𝑀𝑎𝑖𝑛𝑡
𝑖,𝛾=op( 𝑗 ) :

{𝐴,𝑎𝑡 }

{𝑝𝑡 }

{𝐵,𝑏𝑡 }

{𝑞𝑡 }

𝐺𝑎𝑑𝑡1,𝛾

𝐺𝑎𝑑𝑡2,𝛾

𝐼𝑡
𝑖,𝛾

𝐸𝑥𝑖𝑡

𝑐𝑜

𝑒𝑥

1
2

1
2

5
6

1
6

𝑐𝑜

𝑒𝑥

1
6

1
6

1
6

1
2

𝐺𝑎𝑑𝑡1,inc(1) :

{𝑔}

{𝑝𝑡 , 𝑞1−𝑡 }

{𝑝𝑡 , 𝑞1−𝑡 } {𝑝𝑡 , 𝑝1−𝑡 } {𝑝𝑡 , 𝑝1−𝑡 }

{𝑞𝑡 , 𝑝1−𝑡 }

𝑠𝑡𝑔𝑡

𝑙𝑜𝑜𝑝

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

𝐺𝑎𝑑1−𝑡2,inc(2) :

{𝑔}

{𝑝1−𝑡 , 𝑞𝑡 }

{𝑝1−𝑡 , 𝑞𝑡 } {𝑝1−𝑡 , 𝑝𝑡 } {𝑝1−𝑡 , 𝑝𝑡 }

{𝑞1−𝑡 , 𝑝𝑡 }

𝑠𝑡𝑔𝑡

𝑙𝑜𝑜𝑝

2
3

1
3 1

3

2
3

1
3

2
3

1
2

1
2

𝐺𝑎𝑑𝑡1,𝛾 , 𝛾 ∈ {𝑧𝑒𝑟𝑜 (1), init}:

{𝑔}

{𝑝𝑡 , 𝑞1−𝑡 }
{𝑝𝑡 , 𝑝1−𝑡 }

{𝑞𝑡 , 𝑝1−𝑡 }

𝑠𝑡𝑔𝑡
1
4

3
4

1
2

1
2

𝐺𝑎𝑑1−𝑡2,𝛾 , 𝛾 ∈ {𝑧𝑒𝑟𝑜 (2), init}:

{𝑔}

{𝑝1−𝑡 , 𝑞𝑡 } {𝑝1−𝑡 , 𝑝𝑡 }

{𝑞1−𝑡 , 𝑝𝑡 }

𝑠𝑡𝑔𝑡
1
9

8
9

1
2

1
2

𝐺𝑎𝑑1−𝑡2,𝛾 , 𝛾 ∈ {inc(1), dec(1), zero(1) }
𝐸𝑥𝑖𝑡

{𝑔}

{𝐴} {𝐵}

1
2

1
2

{𝑔}

{𝑝1−𝑡 , 𝑞𝑡 } {𝑝1−𝑡 , 𝑞𝑡 } {𝑝𝑡 , 𝑝1−𝑡 }

{𝑞1−𝑡 , 𝑝𝑡 }
𝑠𝑡𝑔𝑡

𝑙𝑜𝑜𝑝

2
3

1
3

1
9

8
9

1
2

1
2

𝐺𝑎𝑑1−𝑡1,dec(1)

{𝑔}

{𝑝1−𝑡 , 𝑞𝑡 }

{𝑝1−𝑡 , 𝑞𝑡 }

{𝑝1−𝑡 , 𝑞𝑡 }

{𝑝𝑡 , 𝑝1−𝑡 }

{𝑞𝑡 , 𝑞1−𝑡 }

{𝑞1−𝑡 , 𝑝𝑡 }

𝑠𝑡𝑔𝑡

𝑙𝑜𝑜𝑝

1
2

1
2

1
4

3
4

1
2

1
2

1
2

1
2

1
2

1
2

𝐺𝑎𝑑𝑡2,dec(2) :

{𝑔}

{𝑝𝑡 , 𝑞1−𝑡 }

{𝑝𝑡 , 𝑞1−𝑡 }

{𝑝𝑡 , 𝑞1−𝑡 }

{𝑝1−𝑡 , 𝑝𝑡 }

{𝑞1−𝑡 , 𝑞𝑡 }

{𝑞𝑡 , 𝑝1−𝑡 }

𝑠𝑡𝑔𝑡

𝑙𝑜𝑜𝑝

2
3

1
3

1
9

8
9

1
2

1
2

2
3

1
3

1
3

2
3

𝐺𝑎𝑑𝑡1,𝛾 , 𝛾 ∈ {inc(2), dec(2), zero(2) }:

{𝑔}

{𝑝𝑡 , 𝑞1−𝑡 }

{𝑝𝑡 , 𝑞1−𝑡 } {𝑝1−𝑡 , 𝑝𝑡 }

{𝑞𝑡 , 𝑝1−𝑡 }
𝑠𝑡𝑔𝑡

𝑙𝑜𝑜𝑝

1
2

1
2

1
4

3
4

1
2

1
2

𝐼𝑡
𝑖,𝛾

:

𝑀𝑎𝑖𝑛1−𝑡
𝑘,inc( 𝑗 )

if 𝜄𝑖 = “inc(𝑗 ); goto 𝑘”;

𝑛𝑒𝑥𝑡

𝑀𝑎𝑖𝑛1−𝑡
𝑘,zero( 𝑗 )

𝑀𝑎𝑖𝑛1−𝑡
𝑙,dec( 𝑗 )

if 𝜄𝑖 = “zero(𝑗 ) ? goto 𝑘 : dec(𝑗 ); goto 𝑙”;

𝑧𝑒𝑟𝑜

𝑑𝑒𝑐

{ℎ𝑎𝑙𝑡 }

if 𝜄𝑖 = “halt”.

Figure 2: Simulating a two-counter machine.
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Let 𝑧𝑛 = 𝑃𝑟 (G, ®𝜎, 𝜑𝑛 𝑚𝑜𝑑 2,𝑛+1𝑚𝑜𝑑 2
𝐴

) be the expected utility
under ®𝜎 for satisfying 𝜑

𝑛 𝑚𝑜𝑑 2,𝑛+1𝑚𝑜𝑑 2
𝐴

(that is, reaching a ter-
minal state labelled 𝑝𝑛 𝑚𝑜𝑑 2) given consecutive histories ℎ𝑣𝑛 and
ℎ𝑣𝑛ℎ

′𝑣𝑛+1 where ℎ′ does not see any player 𝐴 states. For each
𝑗 ∈ {1, 2} and 𝑛 ∈ N, define 𝑚𝑎𝑥𝑛

𝑗
to be the maximum number

of times the loop involving the player 0 state labelled 𝑔 𝑗 is taken
inside any of the gadgets 𝐺𝑎𝑑𝑛 𝑚𝑜𝑑 2

𝑗,𝛾𝑛
. In the gadgets 𝐺𝑎𝑑𝑛 𝑚𝑜𝑑 2

𝑗,𝛾𝑛
,

𝑚𝑎𝑥𝑛
𝑗
= 0 when 𝛾𝑛 ∈ {zero( 𝑗), init}.

Lemma 2. Let ®𝜎 be a strategy profile of (G, 𝑣0) where player 0 wins
almost surely. Then ®𝜎 is a Nash equilibrium iff the following holds.

𝑚𝑎𝑥𝑛+1𝑗 =


1 +𝑚𝑎𝑥𝑛

𝑗
if 𝛾𝑛+1 = inc( 𝑗),

𝑚𝑎𝑥𝑛
𝑗
− 1 if 𝛾𝑛+1 = dec( 𝑗),

𝑚𝑎𝑥𝑛
𝑗
= 0 if 𝛾𝑛+1 = zero( 𝑗),

𝑚𝑎𝑥𝑛
𝑗

otherwise

(1)

for all 𝑗 ∈ {1, 2} and 𝑛 ∈ N.

Lemma 2 ensures a faithful simulation of the two counter ma-
chine: the number of times the loop is taken in gadget𝐺𝑎𝑑𝑛+1𝑚𝑜𝑑 2

𝑗,𝛾𝑛+1
depends on the instruction 𝛾𝑛+1, and the expected value of counter
𝑗 after 𝛾𝑛+1. Lemma 2 goes through many sublemmas. In the follow-
ing, let ®𝜎 be a strategy profile of (G, 𝑣0) where player 0 wins almost
surely. Lemma 3 proves that player 𝐴 gets an expected utility of 1

2
in a strategy where she continues the simulation (choosing 𝑐𝑜).

Lemma 3. ®𝜎 is a NE iff 𝑎𝑛 = 1
2 for all 𝑛 ∈ N.

Lemma 4 is based on the observation that terminal states of
all gadgets (other than 𝐸𝑥𝑖𝑡 ) are labelled either 𝑝𝑡 or 𝑞𝑡 . With
Lemma 3, this gives 𝑏𝑛 = 1

6 . Lemma 4 then follows based on the
relationship between 𝑎𝑛 and 𝑧𝑛 . Recall that 𝑎𝑛 denotes reaching
𝑝𝑛 𝑚𝑜𝑑 2 over 𝛾𝑛, 𝛾𝑛+1, . . . , while 𝑧𝑛 represents reaching it over
𝛾𝑛, 𝛾𝑛+1. Terminal states labelled 𝑝𝑛 𝑚𝑜𝑑 2 are reachable from the
gadgets 𝐺𝑎𝑑𝑡1,𝛾 ,𝐺𝑎𝑑

𝑡
2,𝛾 ,𝐺𝑎𝑑

1−𝑡
1,𝛾 ,𝐺𝑎𝑑1−𝑡2,𝛾 for 𝑡 = 𝑛 𝑚𝑜𝑑 2. From the

player 0 state in𝑀𝑎𝑖𝑛𝑡
𝑖,𝛾
, 𝐺𝑎𝑑𝑡1,𝛾 ,𝐺𝑎𝑑

𝑡
2,𝛾 are reachable with proba-

bility 2
6 . Hence, 𝑎

𝑛 = 𝑧𝑛 + 2
6𝑎

𝑛+2.

Lemma 4. 𝑎𝑛 = 1
2 iff 𝑧𝑛 = 1

3 for all 𝑛 ∈ N.

Using these lemmas, it suffices to show that 𝑧𝑛 = 1
3 iff (1) holds.

This also proves Lemma 2. As observed already, 𝑧𝑛 can be expressed
as the sum of the payoffs of reaching a terminal node labelled
𝑝𝑛 𝑚𝑜𝑑 2 in the gadgets 𝐸𝑥𝑖𝑡 , 𝐺𝑎𝑑𝑛 𝑚𝑜𝑑 2

𝑗,𝛾𝑛
(call this 𝛼 𝑗

𝑛) as well as

the gadgets 𝐺𝑎𝑑𝑛+1𝑚𝑜𝑑 2
𝑗,𝛾𝑛+1

(call this 𝛼 𝑗

𝑛+1), 𝑗 ∈ {1, 2}. The proof of
Lemma 2 is done by a case analysis of all possibilities for 𝛾𝑛, 𝛾𝑛+1
and proving in each case, that 𝑧𝑛 = 1

3 iff (1).
The proof is completed by showing that M has an infinite com-

putation iff (G, 𝑣0) has a Nash equilibrium where player 0 wins
almost surely. Note that pure strategies suffice: for players𝐴, 𝐵, this
is simply choosing the action 𝑐𝑜 . For player 0, corresponding to
each history ending in a gadget 𝐼𝑡

𝑖,𝛾
for 𝑡 ∈ {0, 1}, after visiting a

player 0 state in the𝑀𝑎𝑖𝑛 gadgets 𝑛 times, the strategy is to play
to reach the gadget 𝑀𝑎𝑖𝑛1−𝑡

𝑘,𝛾 ′ such that the configuration 𝜌 (𝑛) of
M corresponds to the instruction 𝜄𝑘 ; this is possible if the config-
uration 𝜌 (𝑛 − 1) of M corresponds to instruction 𝜄𝑖 . For a history

reaching a gadget 𝐺𝑎𝑑𝑡
𝑗,𝛾
, 𝑡 ∈ {0, 1}, after visiting player 𝐴 state

in the 𝑀𝑎𝑖𝑛 gadget 𝑛 times, player 0 chooses the action 𝑙𝑜𝑜𝑝 𝑚

times from the state labelled 𝑔 iff 𝑚 is the value of counter 𝑗 in
configuration 𝜌 (𝑛 − 1). □

Remark. Note that the LTL objectives of the 3 players 𝐴, 𝐵, and
0 use only unary LTL (i.e., where the full power of “until” is not
needed). The formulae 𝜂𝑡 , 𝜑𝑡,1−𝑡𝐴

are used only to specify the payoff
𝑧𝑛 precisely. As described in the construction, given a history ℎ𝑣𝑛 ,
𝑧𝑛 is the accumulated payoff of reaching 𝑝𝑛 𝑚𝑜𝑑 2 in the gadgets
𝐺𝑎𝑑𝑛 𝑚𝑜𝑑 2

𝑗,𝛾𝑛
,𝐺𝑎𝑑𝑛+1𝑚𝑜𝑑 2

𝑗,𝛾𝑛+1
after the instructions𝛾𝑛, 𝛾𝑛+1 for 𝑗 = 1, 2.

4 SPECIAL CASES OF E-NASH

In this section, we study the E-Nash problem under three natu-
ral restrictions on strategies: memoryless, 𝑘-bounded, and myopic
strategies. Such strategies may be more appropriate when consder-
ing games in which players’ goals do not use the full expressivity of
LTL, such as safety objectives. In the case of 𝑘-bounded strategies,
decision problems are specified with 𝑘 given as an input to the
problem (and for simplicity, we assume that 𝑘 is given in unary
encoding).

Theorem 5. E-Nash with memoryless and 𝑘-bounded strategies

is PSPACE-complete.

Proof. For the upper bound, Algorithm 1 can be used to decide
E-Nash. First note that guessing amemoryless (𝑘-bounded) strategy
profile ®𝜎 ∈ Σ𝑀 (Σ𝑘 ) can be done in NP. Secondly, checking whether
®𝜎 |= AS(𝜑) can be done in PSPACE [14]. Finally, checking whether
®𝜎 ∈ NE(G) can be done in PSPACE according to Theorem 7. Thus,
the overall procedure lies in PSPACE.

For hardness, we reduce from the universality problem for LTL
properties on Markov chains (MCs), which is known to be PSPACE-
complete [34]. The problem is to decide, given a finite Markov
chain C = (𝑆, 𝑠𝜄 , tr, 𝜆) and an LTL formula 𝜑 , whether C |= AS(𝜑),
that is, whether the MC satisfies 𝜑 with probability equal to 1.
Clearly, this problem can be encoded in a CSG G with the same
state space, initial state, and labelling function as C. Additionally
G has a single player whose goal is 𝛾1 = ⊤, and whose action set
consists of a single action at each state which induces the same
transition probabilities as those in C. The answer to E-Nashwith 𝜑
as the global formula will be “yes” iff the answer to the universality
problem is “yes”, as a witness Nash equilibrium strategy would
not require any memory. This also therefore shows establishes the
lower bound for E-Nash with 𝑘-bounded strategies. □

Theorem 6. E-Nash with myopic strategies and 3 players is un-

decidable.

Algorithm 1 Memoryless/𝑘-bounded E-Nash
Input: Game G, LTL formula 𝜑

1: Guess NE ®𝜎 ∈ Σ𝑀 (or Σ𝑘 )
2: if ®𝜎 |= AS(𝜑) and ®𝜎 ∈ NE(G) then
3: return “Yes”
4: end if

5: return “No”
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Proof. Observe that the same reduction used in Theorem 1
can be applied to this setting, because the CSG G constructed to
simulate a two-counter machine does not require any player to
observe the actions taken by other players. In particular, there is
a non-halting computation of M if and only if there is a myopic

Nash equilibrium in the CSG G. □

We can also ask the “universal” counterpart of E-Nash, known
as A-Nash, a problem with the same input as E-Nash but where we
ask whether the input LTL formula 𝜑 is satisfied almost surely on
every Nash equilibrium strategy profile of the input game. With the
results above, the complexity of A-Nash naturally follows, as this
can be solved by simply checking a modified version of E-Nash,
such that the answer to this modified version is “yes” iff the LTL
formula is satisfied with non-zero probability, as opposed to being
satisfied almost surely. Then, we can run this modified version of
E-Nash on ¬𝜑 , where 𝜑 is the LTL formula to be checked in the
instance of A-Nash – there is a Nash equilibrium that satisfies ¬𝜑
with non-zero probability if and only if the answer to A-Nash is
“no”. For more details, see Section 3 of [18].

5 MEMBERSHIP

Recall that theMembership problem asks whether a given strategy
profile forms a Nash equilibrium. We now study theMembership
problem, and show that it is decidable for all the types of strategies
we have consider in this paper.

Theorem 7. Membership with memoryless and k-bounded strate-

gies is PSPACE-complete.

Proof. Algorithm 2 decides Membership for these two cases.
This follows from the fact that the algorithm returns “no” if and
only if there exists some player 𝑖 ∈ N and alternative strategy
𝜎′
𝑖
that improves the player’s probability of satisfying their goal

under a unilateral definition. This is precisely the definition of
a Nash Equilibrium; hence, the algorithm decides Membership.
For the complexity of the algorithm, note first that computing
𝑝𝑖 = Pr(G, ®𝜎,𝛾𝑖 ) in line 2 of Algorithm 2 can be done in time that
is polynomial with respect to the CSGA A and exponential with
respect to the goals 𝛾𝑖 , for each 𝑖 ∈ N (see [14] for more details).
However, the construction in [14] uses at most polynomial space
and thus, computing this probability can be done in polynomial
space. Secondly, observe that guessing a memoryless strategy 𝜎′

𝑖
(line 3 of the algorithm) can be done in NPSPACE. Next, computing
the probability Pr(G, ( ®𝜎−𝑖 , 𝜎′𝑖 ), 𝛾𝑖 ) line 4 of Algorithm 2 can again be
done in polynomial space as with line 2. Thus, the overall procedure
lies in PSPACE.

For hardness, we can use a similar reduction to the one from
Theorem 5, that is, we reduce from the universality problem for
LTL properties on finite Markov chains. However, we modify G by
adding two states 𝑠′0, 𝑠∞ to the game so that it starts at 𝑠′0 and there
are two actions {𝑎, 𝑏} available to player 1 at state 𝑠′0. If player 1
chooses action 𝑎 in this state, then the game transitions to 𝑠∞ and
remains there forever. If they choose action 𝑏 on the other hand,
then the game transitions into the state 𝑠𝜄 in G corresponding to
the initial state from the MC C, and the game proceeds as previ-
ously outlined. Let 𝜆(𝑠′0) = ∅ and 𝜆(𝑠∞) = {𝑞}, where 𝑞 is a new
propositional variable. Finally, let player 1’s LTL goal be given by

𝛾1 = 𝑞 ∨ 𝜑 and let this modified game be denoted by G′. Given this
construction, any memoryless strategy 𝜎1 in G′ beginning with
player 1 choosing𝑏 is a memoryless NE if and only if𝜑 is satisfied in
C with probability 1. To see why, observe that if ®𝜎 is a memoryless
NE, then player 1 does not benefit from switching to action 𝑎 in the
first round, which would guarantee the satisfaction of their goal
almost surely. Thus, by choosing to simulate the MC, it must be the
case that C satisfies 𝛾1 (and hence 𝜑) with probability 1. Similarly,
if C does not satisfy 𝜑 almost surely, then player 1 has a beneficial
deviation from 𝜎1 by playing 𝑎 in the first round. Thus, 𝜎1 is a Nash
equilibrium in G′ if and only if C |= AS(𝜑). □

Theorem 8. Membershipwithmyopic and general (finite-memory)

strategies is 2EXPTIME-complete.

Proof. We use Algorithm 2 again. The time complexity of line 2
is exponential in the size of the MC induced by ®𝜎 on G. In line 3, we
construct theMDPG®𝜎−𝑖 and find a𝜎

′
𝑖
that maximises the probability

of satisfying 𝛾𝑖 in G®𝜎−𝑖 ; this is done in time that is polynomial in
the size of the induced MDP and in doubly exponential time wrt
the size of the LTL goal of 𝑖 [14]. Finally, line 4 can be checked
in exponential time as with line 2. For hardness, we reduce from
the qualitative model-checking problem for Σ𝑄𝐿𝑇𝐿

1 formulae in
MDPs, which is known to be 2EXPTIME-complete [28]. 𝑄𝐿𝑇𝐿 is
an 𝜔-regular extension of LTL, which allows one to quantify over
propositional variables and Σ𝑄𝐿𝑇𝐿

1 is the set of𝑄𝐿𝑇𝐿 formulae with
exactly one quantifier, which must be existential. The qualitative
model-checking problem for Σ𝑄𝐿𝑇𝐿

1 formulae in MDPs that we will
work with asks whether, given an MDPM and a Σ𝑄𝐿𝑇𝐿

1 formula
Ψ, it is the case that the maximum probability of satisfying Φ in the
MDP’s initial state 𝑠0 is non-zero.

Given an MDP M = ({1}, St, 𝑠0,Ac1, tr, 𝜆) (i.e., a labelled CSGA
with 1 player) and a Σ𝑄𝐿𝑇𝐿

1 formula Ψ = ∃𝑥 .𝜑 , where 𝜑 is an LTL
formula, we construct a CSG G = ({1}, St′, 𝑠0′ ,Ac′1, tr

′, 𝛾1, 𝜆′) with
one player as follows: firstly, we clone the entire MDP structure
and assign the label 𝑥 to all states in this cloned structure. Thus,
the set of states St′ in G will consist of two copies of the set of
states St in the MDP. For every state 𝑠 ∈ St, let 𝑠′ denote its clone,
so that both 𝑠, 𝑠′ ∈ St′. Secondly, for every state-action pair (𝑠, 𝑎) ∈
St×Ac1, we create another state-action pair (𝑠, 𝑎𝑐 ) that mirrors the
transition probabilities of (𝑠, 𝑎), except that the transitions go to the
corresponding state inM. More precisely, the transition function
tr′ of G is s.t. for all pairs of states 𝑠, 𝑡 ∈ St and all actions 𝑎 ∈ Ac,

tr′ (𝑠, 𝑎) (𝑡) = tr′ (𝑠, 𝑎𝑐 ) (𝑡 ′) = tr′ (𝑠′, 𝑎𝑐 ) (𝑡 ′) = tr′ (𝑠′, 𝑎) (𝑡) =

tr(𝑠, 𝑎) (𝑡);
tr′ (𝑠, 𝑎) (𝑡 ′) = tr′ (𝑠, 𝑎𝑐 ) (𝑡) = tr′ (𝑠′, 𝑎𝑐 ) (𝑡) = tr′ (𝑠′, 𝑎) (𝑡 ′) = 0,

where tr′ (𝑠, 𝑎) (𝑡) denotes the probability assigned to the transition
from 𝑠 to 𝑡 under tr′ (𝑠, 𝑎). Then, we add a new initial state 𝑠0

′
and

a new sink state 𝑠∞ such that 𝜆(𝑠0′ ) = ∅ and 𝜆(𝑠∞) = {𝑦}, where
𝑦 is a new propositional variable. The player has two possible
transitions with probability one from 𝑠0

′
: either transition to 𝑠0

from the original MDP, or transition to 𝑠∞. The player’s goal is
𝛾1 = (2¬𝑦) ∧ (⃝𝜑). The labelling function 𝜆′ is such that for all
states 𝑠 ∈ St, we have 𝜆′ (𝑠) = 𝜆(𝑠) and 𝜆′ (𝑠′) = 𝜆(𝑠) ∪ {𝑥}. Finally,
we check whether the strategy profile that transitions from 𝑠0

′
to

𝑠∞ and remains there forever is a NE. If it is, then the player has no
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strategy that could make the probability of satisfying 𝛾1 positive. If
not, then there is a myopic strategy for the player such that 𝛾1 is
satisfied with positive probability. This is true iff the QLTL formula
Ψ is satisfied with positive probability on the MDP M. □

Remark. Note that the best response is guessed nondeterminis-
tically and does not return a single strategy as such. We chose
to represent line 3 in Algorithm 2 as computing a Best-Response
and refer to the same in Theorems 7,8, though their actual imple-
mentations are different for these two cases. To convert this into a
deterministic algorithm in the case of Theorem 7, we can replace
line 3 with a loop over all strategies in the class under consideration
(i.e., memoryless or k-bounded).

6 CONCLUSIONS AND RELATEDWORK

As indicated in [10, 32, 33], most results for the complexity of Nash
equilibria in 𝑛-player, general-sum, concurrent stochastic games
are either unknown or undecidable, unless at least one of the re-
strictions is dropped – that is, unless the games are 2-player [11],
or zero-sum, or sequential [12], and even in some of these cases,
further restrictions must be imposed – typically on the model of
strategies [33], the type of goals [8, 9], or the precision on Nash
equilibrium computation – in order to obtain decidability. Our re-
sults show that rational verification is consistent with these results,
particularly for 3-player, general-sum, stochastic games. Our re-
sults are optimal in various ways: the problem is decidable if we
allow games to be either 𝑛-player and deterministic, or 2-player
and zero-sum. Thus, an undecidability result for 3-player SSGs that
works for myopic strategies is hard to improve.

Computing the Nash equilibria of 𝑛-player, general-sum, perfect
information, deterministic concurrent games has been studied un-
der a variety of player objectives such as LTL [23],𝜔-regular [5], and
limit-average [32] (see also [7] for a study of sequential determinis-
tic games). These problems become undecidable when considering
imperfect information and LTL or 𝜔-regular goals [16, 24]. In the
LTL setting with reactive module games [24], decidability is recov-
ered in EXPSPACE/NEXPTIME/PSPACE for myopic/memoryless/𝑘-
bounded strategies; with LTL goals, two-player games are also
decidable.

A quantitative extension of strategy logic is 𝑆𝐿[F ], which allows
one to express concepts such as the existence of a Nash equilibrium
in concurrent game structures [6, 26]. However, 𝑆𝐿[F ] is defined
over structures having a deterministic transition function. Thus,
𝑆𝐿[F ] cannot be used to represent solution concepts in our model.

Algorithm 2 Membership
Input: Game G, strategy profile ®𝜎

1: for 𝑖 ∈ 𝑁 do

2: Compute 𝑝𝑖 = Pr(G, ®𝜎,𝛾𝑖 )
3: Compute 𝜎′

𝑖
= Best-Response(G, ®𝜎, 𝑖)

4: if Pr(G, ( ®𝜎−𝑖 , 𝜎′𝑖 ), 𝛾𝑖 ) > 𝑝𝑖 then

5: return “no”
6: end if

7: end for

8: return “yes”

Probabilistic Strategy Logic (PSL) allows one to reason over CSGs
and can hence be used to express our E-Nash problem [3]. However,
the undecidability of model checking PSL cannot be used to prove
the undecidability of E-Nash, so our main result establishes this for
a natural special case of PSL model checking where players have
LTL goals. Furthermore, our PSPACE-completeness result for E-
Nash with memoryless strategies significantly improves the naive
upper-bound of 3EXPSPACE, which one would obtain by encoding
the problem into PSL restricted to memoryless strategies.

A key aspect of our study is the focus on pure strategies. This is
motivated by previous results on stochastic games, in which Nash
equilibrium is known to be undecidable for 𝑛-player stochastic
games, unless extremely simple goal types are considered. Deter-
ministic or finite strategies may not be powerful enough to achieve
optimal behaviour (especially with a small number of players). [33]
shows that considering finite strategies with 14 players gives unde-
cidability in SSGs. As with our improvement on the 9-player Pure
NE undecidability of [33], we conjecture that an improvement can
be made from 14 players to a smaller number under finite strategies.

A final distinctive feature of our study is the use of combined
techniques for qualitative and quantitative probabilistic reasoning.
The probabilistically quantitative part of our model assumes that
players seek, locally and individually, to maximise the probability of
achieving their LTL goals. On the other hand, the probabilistically
qualitative part is used to check if a global LTL specification is almost-
surely satisfied on some Nash equilibrium. This is in contrast to [18]
where only qualitative probabilistic behaviour is considered on
both the goals and global specification. Other ways of combining
qualitative and quantitative probabilistic reasoning can be found
elsewhere, e.g., sometimes using a lexicographic order of qualitative
and quantitative preferences [21], and sometimes by associating
a real value to the probabilistic satisfaction of a temporal logic
formula [2]. All these types of reasoning are different from the one
we propose to use here.

As automated AI systems become more pervasive, ensuring their
reliability and safety will become increasingly important through
formal verification techniques [31]. This study opens up several
important avenues for future research. Our results characterise
the computational complexity of rational verification problems for
multi-agent systems under different strategy models. While some
cases remain undecidable, identifying decidable strategy restric-
tions and objectives in increasingly realistic game models sheds
light on how we might design autonomous systems to ensure their
verifiability. By elucidating the boundaries of decidability in game-
theoretic verification, this research helps to bridge the gap between
principled verification methods and increasingly capable real-world
AI systems by better understanding what models of game struc-
tures, player strategies, and objectives are amenable to automated
verification, particularly in the context of multi-agent interactions.
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