
PlayingQuantitative Games Against an Authority:
On the Module Checking Problem

Wojciech Jamroga
SnT, University of Luxembourg, Luxembourg
ICS, Polish Academy of Sciences, Poland

Munyque Mittelmann
University of Naples Federico II

Naples, Italy

Aniello Murano
University of Naples Federico II

Naples, Italy

Giuseppe Perelli
Sapienza University of Rome

Rome, Italy

ABSTRACT
Module checking is a decision problem to formalize the verification
of systems that must adapt their behavior to the input they receive
from the environment, also viewed as an authority. So far, module
checking has been only considered in the Boolean setting, which
does not capture the different levels of quality inherent to complex
systems (e.g., systems dealing with quantitative utilities or sensor
inputs). In this paper, we address this issue by proposing quanti-
tative module checking. We study the problem in the quantitative
and multi-agent setting, which enables the verification of different
levels of satisfaction in relation to a specification. We consider spec-
ifications given in Quantitative Alternating-time Temporal logics
and investigate their complexity and expressivity.

KEYWORDS
Logics for Strategic Reasoning, Module Checking, Quantitative
Verification

ACM Reference Format:
Wojciech Jamroga, Munyque Mittelmann, Aniello Murano, and Giuseppe
Perelli. 2024. Playing Quantitative Games Against an Authority: On the
Module Checking Problem . In Proc. of the 23rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Model checking is a well-established formal-method technique for
the automated analysis of systems that can be modeled by state-
transition models [19]. This verification method consists of check-
ing the system for global correctness in relation to a logical specifi-
cation. Early use of model checking mainly considered the verifi-
cation of finite-state closed systems, whose behavior is completely
determined by the state of the system. In this setting, models are
usually given as labeled-state transition graphs equipped with some
internal degree of non-determinism while system properties are
specified in temporal logics such as the linear-time temporal logic
LTL [47], the branching-time temporal logics CTL and CTL∗ [25],
and the alternating-time temporal logics ATL and ATL∗ [5].

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

In the last three decades, model-checking techniques have been
extended to the analysis of open systems, that is, reactive systems
that interact with their environment and whose behavior depends
on this interaction. Although temporal logics are suitable for de-
scribing the interactions of those systems, the model-checking
algorithms used for the verification of closed systems are not appro-
priate for the verification of open systems. More precisely, open sys-
tems should be checked with respect to arbitrary environments and
should take into account uncertainty regarding the environment.
One of the first approaches introduced to model check finite-state
open systems ismodule checking [36]. Amodule is a state-transition
model with states partitioned into those controlled by the system
and those controlled by the environment. Correctness in module
checking means that the desired property must hold with respect
to all possible interactions between the system and the environ-
ment. An additional source of nondeterminism is brought by the
environment: the computation, from a state, can continue with any
subset of its possible successor states. As for model checking, the
correctness of a system is a matter of Boolean satisfaction: either
it satisfies the specification or it does not. With module checking,
however, this is a harder problem to deal with, as it requires to
consider an infinite number of trees, one for each possible behavior
of the environment.

After its initial proposal [36, 40], the module checking problem
was extended to the setting where the environment has imperfect
information about the state of the system [37]. An extension of
the problem has been also used to reason about three-valued ab-
stractions in [21, 29]. Previous work investigated module-checking
through a tableaux-based approach [8] and also studied the module-
checking problem for bounded pushdownmodules [46]. Later, push-
down modules were considered to deal with infinite-state open sys-
tems both for perfect [13] and imperfect information settings [6, 11].
All these extensions have considered Boolean module checking,
which is often inadequate when considering complex systems that
interact with a physical environment. Those systems may deal with
quantitative aspects andmeasurements (such as temperature, prices,
and distances). In this paper, we address this issue by proposing
quantitative module checking. We generalize the problem to the
quantitative and multi-agent setting, which enables the verification
of different levels of satisfaction of a specification.

Module checking for Multi-Agent Systems (MAS) captures the
situation in which the system, composed of interacting agents,
plays against an environment (or an authority) whose behavior
may inhibit access to certain paths of the computation tree. In other

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

926

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

words, the environment dictates and restricts the possibilities for
the MAS. As an analogy, imagine a group of children (the MAS), in
which each child has their own goal (playing a video game, eating
candies, ...). The children’s mother (the environment) supervises
them and regulates what they can achieve, e.g., by sending them
to sleep early or hiding the TV’s remote control. The quantitative
dimension expresses how much the system satisfies their goals or
how much the authority can limit them from achieving their goals.
Going back to the analogy, this can represent how much time the
children could enjoy the video game, or how much they enjoyed
their snacks. More realistic examples can include a group of agents
trying to communicate on a social network while being subjected to
moderation policies [28], networks of autonomous vehicles dealing
with transportation policies [7], and software bidding agents who
may be imposed restrictions on online auctions [23].

Related work. Concerning the specification language, module
checking was first investigated with respect to CTL/CTL∗ specifica-
tions [8, 36, 37] and 𝜇-calculus [26]. More recent approaches have
considered module checking of MAS with specifications in ATL
and ATL∗ [12, 33, 34]. In these approaches, the system is modeled
by a multi-agent finite-state concurrent game, whose transitions
are determined by the actions made simultaneously and indepen-
dently by all the agents. Module checking with ATL allows us to
express the strategic abilities of agents to achieve certain goals,
when interacting with an external environment. In this paper we
consider specifications given in quantitative ATL and ATL∗ which
are inspired by LTL[F] [4], a multi-valued logic that augments
LTL with quality operators. Other quantitative extensions of ATL
have also been investigated in the context of model checking, such
as timed ATL [14, 31], multi-valued ATL [32], and weighted ver-
sions of ATL [17, 42, 49]. SL[F] [10] was recently introduced as
a quantitative extension of Strategy Logic (SL) and it subsumes
both SL [18, 45] and LTL[F]. Model checking a SL[F]-formula
𝜑 is 𝑘-Exptime-complete in the number 𝑘 of alternation on the
quantifications in 𝜑 [10], but it does not subsume module checking
ATL, because of the existence of nondeterminism in the latter.

With module checking, we capture how the environment re-
stricts the executions of the game. This is related to normative
systems [1], which define constraints (in terms of obligations and
permissions) on the behavior of agents. In some approaches, norms
correspond to labelling ‘violating’ aspects of the game, such as
states [20, 22, 44], transitions [2], and paths [16]. The synthesis of
norms with system objectives specified in temporal logics has also
been studied, for instance with objectives in LTL [15] and ATL∗ [3].

Contribution. This is the first work to consider module checking
in the quantitative setting. We define the problem of quantitative
module checking and investigate its complexity in relation to spec-
ifications given in ATL∗ [F] and ATL[F], the weighted variants of
ATL∗ and ATL, resp. We also study the model checking problem for
both languages. Table 1 sums up the complexity results. For the
upper bounds, we adopt an automata-theoretic approach. Precisely,
to solve the module-checking question we build a tree automaton1
and check for its emptiness.

1We will use standard parity and Büchi tree automata. The interested reader can refer
to [39] for an introduction to these automata.

Model checking Module checking
ATL[F] Ptime-complete Exptime-complete
ATL∗ [F] 2Exptime-complete 3Exptime-complete

Table 1: Summary of the complexity results

We study the expressive power of ATL∗ [F] module checking
showing that it allows us to capture and verify properties that
cannot be captured by decision problems based on the existing
variants of alternating-time logics. Precisely, we show thatATL∗ [F]
module checking is neither subsumed by ATL∗ module checking
nor by ATL∗ [F] model checking.

2 QUANTITATIVE ATL AND ATL∗

For the remainder of the paper, we fix a finite set of atomic proposi-
tions AP and a finite set of agents Ag, except when stated otherwise.
We also let F ⊆ {𝑓 : [0, 1]𝑚 → [0, 1] | 𝑚 ∈ N} be a set of functions
over [0, 1] of possibly different arities, that will parameterize the
logics we consider. With slight abuse of notation, we denote by
𝑓 ∈ F both the function and the corresponding functor. It will be
clear from the context to which the one symbol corresponds. We
assume all functions in F are computable in polynomial time. This
is enough to capture classic functions, such as the ones representing
disjunction, negation, average, minimum, etc. We write 𝒄 for a tuple
of objects (𝑐𝑎)𝑎∈Ag, one for each agent, and call it a profile. Given
a profile 𝒄 and 𝑎 ∈ Ag, we let 𝑐𝑎 be agent 𝑎’s component.

We begin by introducing the Quantitative Alternating-time Tem-
poral logics ATL∗ [F] and ATL[F].

Definition 1. The syntax of ATL∗ [F] is defined by the grammar

𝜑 ::= 𝑝 | 𝑓 [𝜑, ..., 𝜑] | X𝜑 | 𝜑U𝜑 | 𝜑R𝜑 | ⟨⟨𝐴⟩⟩𝜑

where 𝑝 ∈ AP, 𝐴 ∈ 2Ag, and 𝑓 ∈ F .

The intuitive reading of the operators is as follows: ⟨⟨𝐴⟩⟩𝜑 means
that there exists a strategy for the coalition 𝐴 such that, no mat-
ter how the other players act, 𝜑 holds; X, U, and R are the usual
temporal operators “next”, “until”. and “release”. The meaning of
𝑓 [𝜑1, ..., 𝜑𝑛] depends on the function 𝑓 .

We define usual Boolean operators as functions and assume
they are always present in F . Precisely, we have: ⊤ := 1, ⊥ := 0,
𝜑 ∨𝜑 ′ := max(𝜑, 𝜑 ′), 𝜑 ∧𝜑 ′ := min(𝜑, 𝜑 ′), and ¬𝜑 := 1−𝜑 , respec-
tively. We also make use of the usual syntactic sugar F𝜑 := ⊤U𝜑
and G𝜑 := ¬F¬𝜑 for temporal operators.

An ATL∗ [F] formula of the form ⟨⟨𝐴⟩⟩𝜑 is also called a state for-
mula, or sentence. An important syntactic restriction of ATL∗ [F],
namely ATL[F], is defined as follows.

Definition 2. The syntax of ATL[F] is defined by the grammar

𝜑 ::= 𝑝 | 𝑓 [𝜑, ..., 𝜑] | ⟨⟨𝐴⟩⟩X𝜑 | ⟨⟨𝐴⟩⟩𝜑U𝜑 | ⟨⟨𝐴⟩⟩𝜑R𝜑

where 𝑝 ∈ AP, 𝐴 ∈ 2Ag, and 𝑓 ∈ F .

The language ATL[F] allows us to use only a single temporal
operator in the scope of the strategy quantifiers. Such restriction is
still expressive enough to represent meaningful properties of games,
as well as having more convenient computational complexities than
ATL∗ [F] (see Theorems 4.1 and 4.2).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

927

ATL∗ is defined over Concurrent Game Structures, which are
a model of concurrent computation where agents simultaneously
choose their actions. In such structures, propositions have Boolean
labels, representing whether they are true or false at a given state.
Differently from ATL∗, the semantics of ATL∗ [F] are based on
Weighted Concurrent Game Structures (wCGS), which are also
considered for SL[F]. In a wCGS, atomic propositions describe
features of the game and are assigned a weight in each state.

Definition 3 (wCGS). A weighted concurrent game structure
(wCGS) is a tuple G = (Ac,𝑉 , 𝑑, 𝑜, ℓ) where Ac is a finite set of
actions, 𝑉 is a finite set of states, and ℓ : 𝑉 × AP → [0, 1] is
a weight function. The availability function 𝑑 : Ag × 𝑉 → 2Ac
defines a non-empty set of actions available to agents at each state
and the (deterministic) transition function 𝑜 assigns the outcome state
𝑣 ′ = 𝑜 (𝑣, 𝒄) to each state 𝑣 and tuple of actions 𝒄 ∈ ∏

𝑎∈Ag 𝑑 (𝑎, 𝑣)
that can be executed by the agents in 𝑣 . A pointed wCGS is a pair
(G, 𝑣𝜄) where 𝑣𝜄 ∈ 𝑉 is a special state designed as initial.

In the following examples, we assume that F contains the func-
tion ≤ : (𝑥,𝑦) = 1 if 𝑥 ≤ 𝑦 and ≤ : (𝑥,𝑦) = 0 otherwise; the function
<, and the function = (defined similarly, with < and = instead of
≤, resp.). We use the infix notations 𝑥 ≤ 𝑦, 𝑥 < 𝑦, and 𝑥 = 𝑦 in
the formulas for readability. We also assume that F contains the
|Ag|-ary sum function

∑
: 𝑥1, ..., 𝑥n ↦→ min(1,max(0,∑𝑘 𝑥n)).

Example 1 (Weighted voting game). In a weighted voting game,
each player is given a numeric weight and agents can potentially
benefit by cooperating and forming coalitions [24]. In its standard
formulation, a coalition takes the value 1 if the sum of the weights
of its components exceeds a particular threshold, and the value 0
otherwise. We consider the case in which the weighting is dynamic, in
the sense that agents’ have different weights in different states of the
game. We omit the formalization of the wCGS and refer to [43] for
similar constructions. For each agent 𝑎, we let the atomic proposition
𝑤𝑎 denote her weight in each state.

We can express the winning condition for a coalition 𝐴 ∈ 2Ag
and the threshold 𝜖 ∈ [0, 1], with the following ATL[F] formula:
⟨⟨𝐴⟩⟩F(∑𝑎∈𝐴𝑤𝑎 > 𝜖). That is, the coalition can exceed the threshold
𝜖 in the future. We can also consider the goal in which agents try
to maximize their combined weight, rather than simply achieving a
threshold. The ATL[F] formula ⟨⟨𝐴⟩⟩F(∑𝑎∈𝐴𝑤𝑎) captures the value
the agents can achieve in the future by combining their weights.

The maximum value that can be achieved in the future among all
coalitions is captured by the formula

∨
𝐴∈2Ag ⟨⟨𝐴⟩⟩F(

∑
𝑎∈𝐴𝑤𝑎).

Nondeterministic choices of agents in a wCGS G can be repre-
sented by sets of actions. At state 𝑣 , agent 𝑎 can select any nonempty
set 𝛼 ⊆ 𝑑 (𝑎, 𝑣). The set of successors of 𝑣 after the nondeterministic
choice 𝛼 is the union of successor states for each action in 𝛼 . In a
state 𝑣 ∈ 𝑉 , each player 𝑎 chooses an action 𝑐𝑎 ∈ 𝑑 (𝑎, 𝑣), and the
game proceeds to state 𝑜 (𝑣, 𝒄) where 𝒄 is an action profile (𝑐𝑎)𝑎∈Ag,
(that is, a tuple of actions, one for each agent).

A path 𝜋 = 𝜋0𝜋1 ... ∈ 𝑉𝜔 is an infinite sequence of states such
that for every 𝑖 ≥ 0 there exists an action profile 𝒄 ∈ ∏

𝑎∈Ag 𝑑 (𝑎, 𝜋𝑖)
such that 𝑜 (𝜋𝑖 , 𝒄) = 𝜋𝑖+1. We write 𝜋𝑖 for the state at index 𝑖 in path
𝜋 . Moreover, we write 𝜋≥𝑖 for the suffix of 𝜋 starting from index 𝑖 .
A history ℎ is a finite prefix of a path and last(ℎ) is the last state of
history ℎ. We let Hist be the set of histories.

A (perfect recall) strategy for agent 𝑎 is a function 𝜎 : Hist →
Ac such that 𝜎𝑎 (ℎ) ∈ 𝑑 (𝑎, last(ℎ)) that maps each history to an
action. We let Str𝑎 be the set of all strategies for agent 𝑎, and
Str = ∪𝑎∈AgStr𝑎 . For a state 𝑣 , a coalition of agents 𝐴 ∈ 2Ag \ ∅,
a strategy profile, denoted 𝝈𝐴 = (𝜎𝑎)𝐴 ∈ Str𝐴 =

∏
𝑎∈𝐴 Str𝑎 is a

collection of strategies, one for each agent 𝑎 in 𝐴. The outcome
function Out(𝑣,𝝈𝐴) returns the set of all paths starting on state 𝑣
that can occur when agents in 𝐴 execute the strategy profile 𝝈𝐴 .

Definition 4. For a given ATL∗ [F] (similarly ATL[F]) formula
𝜑 , a weighted CGS G and a path 𝜋 , the satisfaction value of 𝜑 on 𝜋

in G is denoted J𝜑KG (𝜋) and defined recursively as follows:
• J𝑝KG (𝜋) = ℓ (𝜋0, 𝑝)
• J𝑓 [𝜑1,..., 𝜑𝑚]KG (𝜋) = 𝑓 (J𝜑1KG (𝜋), ..., J𝜑𝑚KG (𝜋))
• J⟨⟨𝐴⟩⟩𝜑KG (𝜋) = max𝝈𝐴∈Str𝐴 min𝜋 ′∈Out(𝜋0,𝝈𝐴) {J𝜑KG (𝜋 ′)}
• JX𝜑KG (𝜋) = J𝜑KG (𝜋≥1)
• J𝜑1U𝜑2KG (𝜋) = sup𝑖≥0{min

(
J𝜑2KG (𝜋≥𝑖),min0≤ 𝑗<𝑖J𝜑1KG (𝜋≥ 𝑗)

)
}

• J𝜑1R𝜑2KG (𝜋) = 1 − sup
𝑖≥0

{min
(
1 − J𝜑2KG (𝜋≥𝑖),

min
0≤ 𝑗<𝑖

(1 − J𝜑1KG (𝜋≥ 𝑗))
)
}

where sup denotes the supremum.

⟨⟨𝐴⟩⟩𝜑 is the best satisfaction value of 𝜑 that the agents in 𝐴 can
ensure, no matter how the other agents behave. 𝜑1U𝜑2 maximizes,
over all positions along the play, the minimum between the value of
𝜑2 at that position and the minimal value of 𝜑1 before this position.
The intuition of the remaining operators is defined similarly.

Note that, for a sentence ⟨⟨𝐴⟩⟩𝜑 , the satisfaction value does not
depend on the entire path 𝜋 but only on its initial state 𝜋0. Thus,
we also write J𝜑KG (𝑣) to denote the satisfaction value of a sentence
w.r.t. the pointed wCGS (G, 𝑣). Finally, we write J𝜑KG to denote
the function mapping each node 𝑣 to its satisfaction value J𝜑KG (𝑣).

3 QUANTITATIVE MODULE CHECKING
We now introduce weighted modules and the problem of module
checking for ATL[F] and ATL∗ [F].

3.1 Modules
In its simplest formulation, a module is a labeled-state transition
system with two kinds of agents, the system and the environment.
The set of states is partitioned into those owned by the system, and
those owned by the (nondeterministic) environment [36]. In the
multi-agent setting [34], there are multiple agents (in place of the
system player) that share the control with the environment. Here,
we extend the definition from [34] to the weighted setting, in which
atomic propositions have values in [0, 1].

Definition 5 (Modules). A multi-agent weighted module (or
simply a module) is a pointed wCGS (G, 𝑣𝜄) that contains a special
agent called “the environment” (𝑒𝑛𝑣 ∈ Ag) and whose states are
partitioned into those owned by the environment (i.e., |𝑑 (𝑎, 𝑣) | = 1
for all 𝑎 ≠ 𝑒𝑛𝑣) and those where the environment is passive (i.e.,
|𝑑 (𝑒𝑛𝑣, 𝑣) | = 1).

In other words, a module is a special pointed wCGS where the
executions are controlled in turn by either the environment or
the rest of agents. Note that such alternation in the control is not
strict, meaning that either the environment or the agents can have

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

928

𝑞0

𝑞1 𝑞2

𝑞3 𝑞4

𝑞5

𝑞6

(𝑎,
_,
_)

(𝑎𝑏, _, _)
(_,
𝑝,
) (, 𝑝, _)

(_
, 𝑔
,_)

(_
, 𝑝
, _
)

(_
, 𝑔
,𝑝)

(_, 𝑔, 𝑔)

(_, _, 𝑔)(_, _, 𝑝)

(_, _, _)

(_, 𝑝, _)

Figure 1: Weighted voting game G𝑤𝑣 . The symbol “_” in an ac-
tion profile represents any arbitrary action of the respecting
agent. States 𝑞0 and 𝑞5 (in grey) are controlled by the environ-
ment. Agents have their weights equal 0 in all states except
states 𝑞3, 𝑞4 (in blue) and 𝑞6 (in green). In state 𝑞3,𝑤Ann = 0.5
and𝑤Bob = 0. In state 𝑞6,𝑤Ann = 0.5 and𝑤Bob = 0.5.

multiple controlling round in a row. From now on, we consider only
multi-agent weighted modules. Moreover, whenever it is clear from
the context or not otherwise stated, we denote a module (G, 𝑣𝜄)
simply by G, assuming the initial state has been fixed.

Example 2 (Weighted voting game cont.). Let us present a
module (G𝑤𝑣, 𝑞0) for the weighted voting game (Example 1). Figure 1
presents the states and transitions in the module. The module includes
two agents, Ann and Bob. The atomic proposition 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 denotes
whether a state is owned by the environment (that is, the transition
on that state does not depend on agents’ actions). The environment
owns states 𝑞0 and 𝑞5, while the agents own the remaining ones. Each
agent’s goal is to maximize her own weight. The weights are equal to
0 in all states except 𝑞3, 𝑞4, and 𝑞6. In states 𝑞3 and 𝑞4, 𝑤Ann = 0.5
and𝑤Bob = 0. In state 𝑞6,𝑤Ann = 0.5 and𝑤Bob = 0.5.

The environment is an authority able to prevent Bob from partici-
pating. In 𝑞0, the environment has two actions available, denoted 𝑎
and 𝑎𝑏. When it plays 𝑎, only Ann can perform actions in the next
states. Conversely, if the environment plays 𝑎𝑏, the game turns into
a situation in which both agents can perform actions. Agents have
two possible actions: either to pass (denoted 𝑝) or to gain (denoted 𝑔).
In states not owned by the agents, they can only pass. By playing 𝑔,
they gain resources for themselves, which has the effect of obtaining
the weight 0.5 for themselves in the next state. If agents try to gain
resources at the same time, the game goes to state 𝑞5 in which the
environment prevents both from playing.

3.2 Module Checking
Given finite sets 𝐷 of directions, AP of atomic propositions, and
V ⊆ [0, 1] of possible values, an (AP,V)-labeled 𝐷-tree, (or tree
for short when the parameters are understood), is a pair 𝑡 = (𝑇, ℓ)
where 𝑇 ⊆ 𝐷+ is closed under non-empty prefixes, all nodes 𝑢 ∈ 𝑇

start with the same direction 𝑟 , called the root, and have at least
one child 𝑢 ·𝑑 ∈ 𝑇 , and ℓ : 𝑇 → VAP is a weight function. A branch
𝜆 = 𝑢0𝑢1 ... is an infinite sequence of nodes such that for all 𝑖 ≥ 0,

we have that𝑢𝑖+1 is a child of𝑢𝑖 . We let Br(𝑢) be the set of branches
that start in node 𝑢. We say that a tree 𝑡 = (𝑇, ℓ) is Boolean in 𝑝 ,
written B+𝑡𝑝 , if for all 𝑢 ∈ 𝑇 we have ℓ (𝑢) (𝑝) ∈ {0, 1}.

For awCGSG = (Ac,𝑉 , 𝑑, 𝑜, ℓ), the unwinding ofG is themodule
Unw(G) = (Ac, 𝐻, 𝑑′, 𝑜′, ℓ′), pointed to the root 𝜀, where𝐻 ⊆ 𝑉 ∗ is
the (prefix-closed) set of histories in G, 𝑑′ (ℎ) = 𝑑 (last(ℎ)) for each
ℎ ∈ 𝐻 , 𝑜′ (ℎ, 𝒄) = ℎ · 𝑜 (last(ℎ), 𝑐), for every history ℎ and profile of
actions 𝒄 , and ℓ′ (ℎ) = ℓ (last(ℎ)). Let ValG = {ℓ (𝑣, 𝑝) | (𝑣, 𝑝) ∈ 𝑉 ×
AP}. Note that Unw(G) defines the unique (AP,ValG)-labeled 𝑉 -
tree, where the successors of a node 𝑣 are all possible successors inG
and the weight function corresponds to the one inG. Sometimes, we
use Unw(G) to also denote the corresponding (AP,ValG)-labelled
tree. For a module (G, 𝑣𝜄), the set of (environment) strategy trees
of G, denoted exec(G) is obtained from Unw(G) by pruning some
environment transitions (i.e., transitions from environment states).
Formally,T = (Ac,𝑇 , 𝑑′, 𝑜, ℓ′) ∈ exec(G) if𝑇 ⊆ 𝐻 is a prefix-closed
subset of histories such that, for every ℎ ∈ 𝑇 , it holds:
• if last(ℎ) is a state not own by the environment, then 𝑜′ (ℎ, 𝒄) ∈ 𝑇

for every available profile of actions 𝒄 ;
• if last(ℎ) is a state own by the environment, available profile of
agent’s actions 𝒄 such that 𝑜′ (ℎ, 𝒄) ∈𝑇 .
Every (AP,ValG)-labeled tree T ∈ exec(G) corresponds to a

subtree of Unw(G) where only children nodes (and subsequent
successors) of the environment nodes are pruned.

Definition 6. Given an ATL∗ [F] formula 𝜑 , a pointed wCGS
(G, 𝑣), and predicate 𝑃 ⊆ [0, 1],Model checking ATL∗ [F] consists
in deciding whether the satisfaction value of 𝜑 in G is in 𝑃 , i.e.,
J𝜑KG (𝑣) ∈ 𝑃 . In this case, we say that (G, 𝑣) 𝑃-satisfies 𝜑 (written:
(G, 𝑣) |=𝑃 𝜑).

Definition 7. Given an ATL∗ [F] formula𝜑 and a module (G, 𝑣),
we define the reactive semantics of 𝜑 as the set of truth values for 𝜑
in all strategy trees of the module, i.e., J𝜑KG𝑟 (𝑣) = {J𝜑KT (𝑣) | T ∈
exec(G)} 2.Module checking ATL∗ [F] consists in deciding whether
J𝜑KG𝑟 (𝑣) ⊆ 𝑃 , for a given predicate 𝑃 ⊆ [0, 1]. In that case, we say
that (G, 𝑣) reactively 𝑃-satisfies 𝜑 (written: (G, 𝑣) |=𝑟

𝑃
𝜑).

In the case that atomic propositions only take values in [0, 1]
and the functions in F are restricted to the ones representing dis-
junction and negation, the ATL∗ [F] and ATL[F] correspond to
ATL∗ and ATL, resp. Similarly, the fragment of ATL∗ [F] with only
temporal operators and the functions for disjunction and negation
corresponds to Fuzzy Linear-time Temporal Logic [27, 41].

Since ATL[F] and ATL∗ [F] can be seen as fragments of SL[F]
[10], their model-checking problems are subsumed by SL[F] model-
checking. On the other hand, the module checking problem involves
nondeterminism of the environment, which has not been considered
for SL[F] and is not captured by its model checking. Since SL[F] is
deterministic, the system always executes the same strategies from
a given history. An example of nondeterminism for the environment
is the situation in which may rain tomorrow, which would cause
the parks to be closed. In this case, the execution trees in which the
agents enjoy the day at the park could be pruned, depending on the
behavior of the environment. This setting is captured by module
checking, but not by SL[F].
2We use “𝑟 ” to denote that the semantics is reactive, in opposition to the satisfaction
value of model-checking (for which we write simply J.K (.)).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

929

Example 3 (Weighted voting game cont.). Let us resume the
module (G𝑤𝑣, 𝑞0) of Example 2. Let𝐴 be the coalition of Ann and Bob.
It is not the case that G𝑤𝑣 reactively {0.5, 1}-satisfies ⟨⟨Bob⟩⟩F𝑤Bob
nor {1}-satisfies ⟨⟨𝐴⟩⟩F∑𝑎∈𝐴 (𝑤𝑎). Instead, G𝑤𝑣 reactively {0.5, 1}-
satisfies ⟨⟨𝐴⟩⟩F∑𝑎∈AB (𝑤𝑎), because Ann can always obtain the re-
quired weight. Note that no agent by itself can bring back the control
from the system, that is it is not the case that G𝑤𝑣 reactively {1}-
satisfies ⟨⟨Ann⟩⟩F¬𝑐𝑜𝑛𝑡𝑟𝑜𝑙∨⟨⟨Bob⟩⟩F¬𝑐𝑜𝑛𝑡𝑟𝑜𝑙 . If they cooperate, they
can avoid the state in which the environment prevents them from
playing, that is, G𝑤𝑣 reactively {1}-satisfies ⟨⟨𝐴⟩⟩F¬𝑐𝑜𝑛𝑡𝑟𝑜𝑙 .

4 COMPLEXITY
To solve module checking, we adopt an automata-theoretic ap-
proach, whose overall complexity varies according to whether we
are using an ATL∗ [F] or an ATL[F] specification.

We first recall some basic concepts about tree automata (see [30],
for a survey). We start with alternating Parity tree automata (APT),
which are formally defined as tuples A = ⟨𝑄,𝑞0, 𝐷, Σ, 𝛿, 𝛼⟩ where
𝑄 , 𝐷 , and Σ are non-empty finite sets of states, directions, and
input letters, 𝑞0 ∈ 𝑄 is an initial state, 𝛼 = (𝐹1, ..., 𝐹𝑘) is a sequence
of subsets of 𝑄 where 𝐹1 ⊆ ... ⊆ 𝐹𝑘 = 𝑄 is a parity acceptance
condition and 𝑘 the index of the automaton, and 𝛿 : 𝑄 × Σ →
𝐵+ (𝐷 ×𝑄) is an alternating transition function that maps each pair
of states and input symbols into a negation-free Boolean formula
on the set of propositions of the form (𝑑, 𝑞), where 𝑑 is a direction
and 𝑞 a state. Note that an APT, while visiting a node of the input
tree, can send several copies of itself to the same successor. A run
of an APT A on a Σ-labeled 𝐷-tree 𝑡 = (𝑇, ℓ) is a (𝑄 ×𝑇)-labeled
N-tree 𝑅 = (𝑇𝑟, 𝑟) such that (i) 𝑟 (𝜀) = (𝑞0, 𝜀) and (ii) for all 𝑦 ∈ 𝑇𝑟

with 𝑟 (𝑦) = (𝑞, 𝑥), there exists a set 𝑆 ⊆ 𝐷 ×𝑄 with 𝑆 |= 𝛿 (𝑞, ℓ (𝑥))
such that, for all (𝑑, 𝑞′) ∈ 𝑆 , there is an index 𝑖 ∈ N for which it
holds that 𝑟 (𝑦 · 𝑖) = (𝑞′, 𝑥 · 𝑑). The run 𝑅 is accepting if, for every
branch 𝜆, the least index 1 ≤ 𝑖 ≤ 𝑘 such that at least one state of
𝐹𝑖 occurs infinitely often in 𝜆 is even. A tree 𝑡 is accepted by A
if there is an accepting run of A on it. By L(A) we denote the
language accepted by the automaton A, i.e., the set of all trees that
A accepts. A is said empty if L(A) = ∅. The emptiness problem
for A is to decide whether L(A) = ∅. A nondeterministic Parity
tree automaton (NPT) is a special case of an APT in which, when
its transition relation is rewritten in disjunctive normal form, each
conjunction in the transition function 𝛿 has exactly one move (𝑑, 𝑞)
associated with each direction 𝑑 . A nondeterministic Büchi tree
automaton (NBT) is an NPT with 𝛼 = (𝐹1 = ∅, 𝐹2, 𝐹3 = 𝑄). Note
that for an NBT, the acceptance condition reduces to having a state
in 𝐹2 occur infinitely often on every branch. For this reason, an
NBT can also be denoted as A = ⟨𝑄,𝑞0, 𝐷, Σ, 𝛿, 𝐹 ⟩, with 𝐹 = 𝐹2
being the set that must occur infinitely often for acceptance.

We can now proceed with the solution of the module-checking
problem. For simplicity, we show the procedure for ATL∗ [F] formu-
las 𝜑 of the form ⟨⟨𝐴⟩⟩𝜓 with𝜓 containing no strategy quantifiers.
Such a procedure can be easily lifted to address any ATL∗ [F] and
ATL[F] formulas in the usual way ([5, 10]) 3. Consider a pointed
G (G, 𝑣𝜄) and a coalition 𝐴. Observe that every strategy profile 𝜎𝐴

3For an arbitrary ATL∗ [F] or ATL[F] formula, the procedure consists of recursively
solving the innermost formula with strategic operators and replacing it by a proposition
whose weight is the satisfaction value of such formula.

defines an (AP,𝑉)-labeled𝑉 -tree𝑇𝜎𝐴,𝑣𝜄 such that, if𝑢,𝑢 ·𝑣 ∈ 𝑇𝜎𝐴,𝑣𝜄 ,
then 𝑣 = 𝑜 (last(𝑢), 𝒄), for some 𝒄 consistent with 𝜎𝐴 (𝑢). In other
words, the tree 𝑇𝜎𝐴,𝑣𝜄 collects all possible outcomes in G that are
compatible with the execution of 𝜎𝐴 . We have the following.

Lemma 1. For a pointed wCGS (G, 𝑣𝜄) and a coalition 𝐴, there
exists an NBT A𝐴

G,𝑣𝜄 such that

L(A𝐴
G,𝑣𝜄) = {𝑇𝜎𝐴,𝑣𝜄 | for some strategy profile 𝜎𝐴}.

Proof sketch. The NBT A𝐴
G,𝑣𝜄 = ⟨𝑉 , 𝑣𝜄 , 𝐷, (AP,V), 𝛿,𝑉 ⟩ is de-

fined over the set of states 𝑉 , the set AP,V of atomic proposition
evaluations as alphabet, the initial state 𝑣𝜄 , and every state as final.
Let 𝐶 =

∏
𝑎∈𝐴 𝑑 (𝑎, 𝑣) and 𝐷 =

∏
𝑎∈Ag\𝐴 𝑑 (𝑎, 𝑣), the latter being

also the set of directions of the automaton. The transition function
𝛿 is defined such that, for every state 𝑣 ∈ 𝑉 , we have that

𝛿 (𝑣, ℓ (𝑣)) = ∨
𝑐𝐴∈𝐶

∧
𝑐Ag\𝐴∈𝐷 (𝑜 (𝑣, 𝑐𝐴 ∪ 𝑐Ag\𝐴), 𝑐Ag\𝐴).

This means that, if the input corresponds to the labeling ℓ (𝑣) of
the current state 𝑣 , the successors correspond to a possible choice
𝑐𝐴 of 𝐴 and, for each of them, the automaton branches to each
direction 𝑐Ag\𝐴 that corresponds to the choice of Ag\𝐴. Otherwise,
if the input is not the labeling of the current state, the automaton
sends to the empty set, meaning that we reach a dead end, and it
is not possible to generate any accepting run from there onward.
The statement straightforwardly follows from the construction.
Moreover, the size of AG,𝑣𝜄 is linear in the size of the underlying
wCGS G. □

Also, we can define an automaton accepting trees with only
branches that 𝑃-satisfy a given LTL[F] formula𝜓 .

Proposition 1. LetV ⊆ [0, 1] be a finite set of values such that
{0, 1} ⊆ V , and let 𝐷 be a finite set of directions. For every formula
𝜓 ∈ LTL[F] and predicate 𝑃 ⊆ [0, 1], there exists an APTAV,𝑃

𝜓
with

doubly-exponentially many states w.r.t. the size of𝜓 and exponentially
many colors w.r.t. the size of𝜓 , such that for every (AP,V)-labelled
𝐷-tree 𝑡 , AV,𝑃

𝜓
accepts 𝑡 if and only if every branch 𝜆 of 𝑡 𝑃-satisfies

𝜓 . If the LTL[F] formula𝜓 has no nesting of temporal operators,
AV,𝑃

𝜓
has an exponential number of states w.r.t. the size of𝜓 and 2

colors.

Proof sketch. For every formula 𝜓 ∈ LTL[F], we can write
the formula ∀𝜓 , which can be regarded as a Booleanly-quantified
CTL∗ (BQCTL∗ [F]) formula, introduced in [10], of nesting depth 1.
Such formula is 𝑃-satisfied on a (AP,V)-labelled 𝐷-tree 𝑡 iff every
branch 𝜆 of 𝑡 𝑃-satisfied𝜓 . This means that the language of AV,𝑃

𝜓

must be exactly made by such labelled trees.
The proof of Proposition 4 in [10] shows how to construct such

an automaton. Note that having nesting depth 1 ensures thatAV,𝑃

𝜓

is of the requested size.
In case𝜓 has no nesting operators, the BQCTL∗ [F] formula ∀𝜓

belongs to the fragment BQCTL[F], obtained from extending CTL
instead ofCTL∗ to the quantitative setting. Observe that in the proof
of Proposition 4 in [10] the approach is to construct, for each value
𝑣 ∈ 𝑃 ∩V , an automaton accepting trees whose satisfaction value
is exactly 𝑣 . Thus, the union of these automata accepts labeled trees
whose satisfaction value belongs to 𝑃 ∩ V . As the temporal part

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

930

encapsulates the standard automata approach, the construction for
a CTL-like formula builds an automaton with polynomially many
states and 2 colors. However, as we have to build the union of
|𝑃 ∩V| of them, and the latter can be exponential in the size of𝜓 ,
we obtain that the overall construction is of exponentially many
states and 2 colors. □

For a given subset𝐴 of agents and a state 𝑣 , consider the function

Post(𝐴, 𝑣) = {𝑜 (𝑣, 𝒄𝑨) | 𝒄𝑨 ∈
∏
𝑎∈𝐴

𝑑 (𝑎, 𝑣)}.

Intuitively, the function Post returns all possible subsets of states
that can be enforced by coalition𝐴 from 𝑣 , one for each action profile
available to them.

The function BestX computes the Best Next response, according
to a given evaluation function eval : 𝑉 → [0, 1], defined as

BestX(𝐴, 𝑣, eval) = max
𝑆∈Post(𝐴,𝑣)

min
𝑣′∈𝑆

{eval(𝑣 ′)}

Algorithm 1 modelCheck(G, 𝜑)
Input: wCGS G = (Ac,𝑉 , 𝑑, 𝑜, ℓ); ATL[F] formula 𝜑 .
Output: a function eval(𝜑) : 𝑉 → [0, 1] such that

eval(𝜑) (𝑣) = J𝜑KG (𝑣), for each 𝑣 ∈ 𝑉 .
1: case 𝜑 = 𝑝 ∈ AP
2: for 𝑣 ∈ 𝑉 do
3: eval(𝜑) (𝑣) := ℓ (𝑣, 𝑝)
4: case 𝜑 = 𝑓 [𝜑1, ..., 𝜑𝑛]
5: for 𝑣 ∈ 𝑉 do
6: eval(𝜑) (𝑣) := 𝑓 (eval(𝜑1) (𝑣), ..., eval(𝜑𝑛) (𝑣))
7: case 𝜑 = ⟨⟨𝐴⟩⟩X𝜓
8: for 𝑣 ∈ 𝑉 do
9: eval(𝜑) (𝑣) := BestX(𝐴, 𝑣, eval(𝜓))
10: case 𝜑 = ⟨⟨𝐴⟩⟩𝜓1U𝜓2
11: eval(𝜑) := eval(𝜓2)
12: while eval(𝜑) changes do
13: for 𝑣 ∈ 𝑉 do
14: if eval(𝜑) (𝑣) < min{eval(𝜓1) (𝑣),BestX(𝐴, 𝑣,

eval(𝜑))} then eval(𝜑) (𝑣) := min{eval(𝜓1) (𝑣),BestX(𝐴,
𝑣, eval(𝜑))}

15: case 𝜑 = ⟨⟨𝐴⟩⟩𝜓1R𝜓2
16: eval(𝜑) := 1 − eval(𝜓2)
17: while eval(𝜑) changes do
18: for 𝑣 ∈ 𝑉 do
19: if eval(𝜑) (𝑣) < 1 − min{eval(𝜓1) (𝑣),BestX(𝐴, 𝑣,

eval(1 − 𝜑))} then eval(𝜑) (𝑣) := 1 − min{eval(1 − 𝜓1) (𝑣),
BestX(𝐴, 𝑣, eval(𝜑))}

return eval(𝜑)

Lemma 2. For a given ATL[F] formula 𝜑 and a wCGS G, Algo-
rithm 1 returns a function eval(𝜑) such that

eval(𝜑) (𝑣) = J𝜑KG (𝑣) for each 𝑣 ∈ 𝑉

Proof. The proof proceeds by structural induction on the for-
mula 𝜑 . The only nontrivial case is for 𝜑 = ⟨⟨𝐴⟩⟩𝜓1U𝜓2.

Since this case involves the activation of a while-loop, we first
prove termination.

Let eval0 (𝜑), eval1 (𝜑), ..., eval𝑘 (𝜑), ... be the sequence of func-
tions eval computed at each iteration of the while-loop. First ob-
serve that eval𝑘 (𝜑) (𝑣) ranges in a finite set of values in [0, 1]. More-
over, because of lines 14 and 15 of the while-loop, we have that
eval𝑘 (𝜑) (𝑣) ≤ eval𝑘+1 (𝜑) (𝑣) for each 𝑣 ∈ 𝑉 and 𝑘 ∈ N. This means
that eval𝑘 (𝜑) (𝑣) is an non-decreasing sequence of reals, ranging
in a finite set, which implies that there exists 𝑓 ∈ N such that
eval𝑓 (𝜑) (𝑣) = eval𝑓 +1 (𝜑) (𝑣), for each 𝑣 ∈ 𝑉 and that the termina-
tion condition of the while-loop is always met.

It remains to prove that eval𝑓 (𝜑) (𝑣) = J𝜑KG (𝑣) for each 𝑣 ∈ 𝑉 .
First, we prove, by induction, that eval𝑘 (𝜑) (𝑣) ≤ J𝜑KG (𝑣), for

each 𝑘 ≤ 𝑓 . As base case, first observe that

⟨⟨𝐴⟩⟩𝜓1U𝜓2 ≡ max{𝜓2,min{𝜓1, ⟨⟨𝐴⟩⟩X⟨⟨𝐴⟩⟩𝜓1U𝜓2}}.

From which we obtain the following.

eval0 (𝜑) (𝑣) = eval0 (𝜓2) (𝑣) (1)

= J𝜓2KG (𝑣) (2)

≤ J⟨⟨𝐴⟩⟩𝜓1U𝜓2KG (𝑣) (3)

Where equality 2 holds by structural induction, while inequal-
ity 3 because of the equivalence mentioned above.

For the induction case, assume that eval𝑘 (𝜑) (𝑣) ≤ J𝜑KG (𝑣) for
each 𝑣 ∈ 𝑉 . We have the following.

eval𝑘+1 (𝜑) (𝑣) ≤ min{eval(𝜓1) (𝑣),BestX(𝐴, 𝑣, eval𝑘 (𝜑))} (4)

≤ min{eval(𝜓1) (𝑣),BestX(𝐴, 𝑣, J𝜑KG)} (5)

= min{eval(𝜓1) (𝑣), J⟨⟨𝐴⟩⟩X𝜑KG (𝑣)} (6)

= min{J𝜓1KG (𝑣), ⟨⟨𝐴⟩⟩X𝜑} (7)

≤ max{J𝜓2KG (𝑣),min{J𝜓1KG (𝑣), ⟨⟨𝐴⟩⟩X𝜑}} (8)

= J𝜑KG (𝑣) (9)

Where

• Inequality 4 holds from the definition of the algorithm;
• Inequality 5 holds by induction hypothesis;
• Equality 6 holds from the definition of BestX;
• Equality 7 holds from the structural induction on 𝜑 ;
• Inequality 8 holds from the definition of max;
• Equality 9 holds from the formula equivalence mentioned
above.

Now, assume by contradiction that eval𝑓 (𝜑) ≠ J𝜑KG and con-
sider a node 𝑣 ∈ 𝑉 such that eval𝑓 (𝜑) (𝑣) ≠ J𝜑KG (𝑣) and eval𝑓 (𝜑) (𝑣 ′) =
J𝜑KG (𝑣 ′) for every other node 𝑣 ′ such that eval𝑓 (𝜑) (𝑣) < eval𝑓 (𝜑) (𝑣 ′).

First, observe that J𝜓2KG (𝑣) ⪇ J𝜑KG (𝑣). Otherwise, it would
hold that J𝜓2KG (𝑣) = J𝜑KG (𝑣)eval(𝜓2) (𝑣) ≤ eval𝑓 (𝜑) (𝑣), and, for
the inequality proved above, J𝜓2KG (𝑣) = eval𝑓 (𝜑) (𝑣), which con-
tradicts the assumption.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

931

Therefore, we must have

J𝜑KG (𝑣) = max{J𝜓2KG (𝑣),min{J𝜓1KG (𝑣),BestX(𝐴, 𝑣, J𝜑KG)}}
(10)

= min{J𝜓1KG (𝑣),BestX(𝐴, 𝑣, J𝜑KG)} (11)
= min{eval(𝜓1) (𝑣),BestX(𝐴, 𝑣, eval𝑓 (𝜑))} (12)

The last equivalence holds from the fact that we are looking
at successors of 𝑣 according to the best responses of coalition 𝐴,
which must contain only nodes 𝑣 ′ such that J𝜑KG (𝑣) ≤ J𝜑KG (𝑣 ′).

Now, from line 14 of the algorithm, we obtain that the while loop
is not yet terminated, which is a contradiction. Hence eval𝑓 (𝜑) (𝑣) =
J𝜑KG (𝑣). The case 𝜑 = ⟨⟨𝐴⟩⟩𝜓1R𝜓2 can be proved similarly to the
previous, by just dualizing the arguments. □

We are now ready to prove the following.

Theorem 4.1 (Model Checking). Assume that the functions in
F are computable in polynomial time, for a given ATL∗ [F] formula
𝜑 = ⟨⟨𝐴⟩⟩𝜓 , a pointed wCGS (G,𝑣), and a predicate 𝑃 ⊆ [0,1], we have
that:
(1) Checking that (G, 𝑣) 𝑃-satisfies 𝜑 is 2Exptime-complete.
(2) If 𝜑 is an ATL[F] formula, it is Ptime-complete.

Proof. We prove the two items separately.
(1) Regarding ATL∗ [F], consider the product A = A𝐴

G,𝑣𝜄 ⊗ AV,𝑃

𝜓
.

This is an APT accepting those (AP,𝑉)-labeled trees that are ob-
tained from some strategy profile 𝜎𝐴 for coalition 𝐴 (Lemma 1)
such that each branch 𝑃-satisfies𝜓 (Proposition 1). This proves
that the model-checking problem can be decided by solving
the non-emptiness problem of such automaton. Due the size of
AV,𝑃

𝜓
, we obtain thatA has doubly-exponentially many states,

w.r.t the size of 𝜑 and exponentially many colors w.r.t. the size
of 𝜑 , which in turns implies that the emptiness problem of A
is 2Exptime w.r.t. 𝜑 . The lower-bound follows from the model
checking of ATL∗, which is obviously reduced in linear time to
the model checking of ATL∗ [F].

(2) Regarding ATL[F], the lower bound is inherited from ATL [5].
The upper bound is a consequence of Lemma 2 and by noticing
that the number of cycles in the while loops (Lines 12-14, 17-19)
of Algorithm 1 is, in the worst case, quadratic on the number
states in 𝑉 . □

For module checking, instead, we need to account also for all
possible pruning of the environment. We first provide the following.

Lemma 3. For a given weighted CGS (G, 𝑣), an ATL∗ [F] formula
𝜑 = ⟨⟨𝐴⟩⟩𝜓 and a set 𝑃 ⊆ [0, 1], one can construct an NPT A𝜑,𝑃

G,𝑣𝜄 ac-
cepting all the (AP,ValG)-labeled subtrees 𝑡𝜎𝐴,𝑣𝜄 of some environment
strategy tree T ∈ exec(G) such that J𝜑KT (𝑣) ∈ 𝑃 . The automaton
A𝜑,𝑃

G,𝑣𝜄 has triply-exponentially many state w.r.t. the size of 𝜓 and
doubly-exponentially many colors w.r.t. the size of𝜓 .

Proof sketch. Consider again the APT A = A𝐴
G,𝑣𝜄 ⊗ AV,𝑃

𝜓
.

From Theorem 4.1, we obtain that this recognizes the labeled sub-
trees 𝑡 ofG that correspond to some strategy profile𝜎𝐴 and 𝑃-satisfy
𝜓 . We need to modify such automaton in order to recognize also
those labeled subtrees 𝑡 of some T ∈ exec(G, 𝑣𝜄). Every subtree 𝑡

can be equivalently represented as (AP,V∪{⊥})-labeled complete
𝑉 -tree 𝑡⊥, called ⊥-completion encoding of 𝑡 in which, each node
𝑢 of 𝑡 is labeled the same in 𝑡⊥ and each node 𝑢 in 𝑡⊥ that does not
belong to 𝑡 is labeled with the special symbol ⊥.

In [Theorem 4][12], the authors show that this can be done at
the price of an exponential blow-up. Indeed, in order to perform
such extension, one has to first nondeterminize the automaton A
and then extend it in order to recognize the⊥-completion encoding.
The resulting automaton (which is an NPT) thus recognizes those
subtrees 𝑡 of some strategy tree T ∈ exec(G) such that J𝜑KT (𝑣) ∈
𝑃 .

Given that the automatonA is already of double-exponential size
w.r.t. 𝜑 , the resulting construction is of triple-exponential size. □

With Lemma 3, we have a machinery in place to solve module-
checking. The following theorem holds.

Theorem 4.2 (Module Checking). Assume that the functions in
F are computable in polynomial time, for a given ATL∗ [F] formula
𝜑 , a pointed wCGS (G, 𝑣), and a predicate 𝑃 ⊆ [0, 1], we have that:

• Checking that (G, 𝑣) reactively 𝑃-satisfies 𝜑 is 3Exptime-
complete.

• If 𝜑 is an ATL[F] formula, it is Exptime-complete.

Proof. Consider the complement 𝑃 = [0, 1] \ 𝑃 of 𝑃 . Clearly,
a weighted CGS (G, 𝑣) does not reactively 𝑃-satisfy an ATL[F]
formula𝜑 iff there exists an environment strategy treeT ∈ exec(G)
such that J𝜑KT (𝑣) ∈ 𝑃 . Therefore, we can reduce module checking
to check the non-existence of such T . Now, from Lemma 3, we can
build the NPT A𝜑,𝑃

G,𝑣𝜄 that accepts exactly those (AP,ValG)-labeled
subtrees 𝑡𝜎𝐴,𝑣𝜄 of some environment strategy tree T ∈ exec(G)
such that J𝜑KT (𝑣) ∈ 𝑃 . This implies that, Ł(A𝜑,𝑃

G,𝑣𝜄) = ∅ if, and only
if, (G, 𝑣) reactively 𝑃-satisfies 𝜑 .

As for the complexity, we have that checking the emptiness of
an NPT is polynomial in the number of states and exponential in
the number of colors [38]. This returns the following complexity
for module checking.

• If 𝜑 is an ATL∗ [F] formula, the size of the automaton is
double-exponential in the size of 𝜑 and has exponentially
many colors, resulting in 3EXPTIME procedure for the empti-
ness and, subsequently, for the module checking.

• If 𝜑 is an ATL[F] formula, the size of the automaton is
exponential in the size of 𝜑 and has polynomially many
colors, resulting in a EXPTIME procedure for the emptiness,
subsequently, for the module checking.

Both complexities are tight, as the lower-bounds of 3EXPTIME
and EXPTIME forATL∗ [F] andATL[F] follow from the complexity
of Module checking ATL∗ and ATL, respectively [12]. □

5 EXPRESSIVITY
We will now proceed to prove the following:

(1) ATL∗ [F] module checking is not subsumed by ATL∗ mod-
ule checking. That is, making module checking quantitative
extends the set of verifiable properties.

(2) ATL∗ [F] module checking is not subsumed by ATL∗ [F]
model checking. That is, switching from model to module

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

932

𝑣0𝑣1 𝑣2

Figure 2: Structure of a module. All nodes owned by environ-
ment

checking allows us to capture quantitative properties that
cannot be expressed otherwise.

The aim of this section is to show thatATL∗ [F] module checking
allows to capture and verify properties that cannot be captured by
decision problems based on existing variants of alternating-time logics.

We first recall the concepts of expressive and distinguishing
power for many-valued logics [9].

Definition 8 (Distinguishing power and expressive power).
Let L1 = (𝐿1, J·K1) and L2 = (𝐿2, J·K2) be two logical systems with
syntax 𝐿1, 𝐿2 and real-valued semantics J·K1, J·K2 over the same class
of structuresM. We say that L2 is at least as distinguishing as L1
(written: L1 ⪯𝑑 L2) iff for every pair of structures 𝑀,𝑀′ ∈ M, if
there exists a formula 𝜑1 ∈ 𝐿1 such that J𝜑1K𝑀1 ≠ J𝜑1K𝑀

′
1 , then there

is also 𝜑2 ∈ 𝐿2 with J𝜑2K𝑀2 ≠ J𝜑2K𝑀
′

2 . In other words, if there is
a formula of L1 discerning 𝑀 from 𝑀′, then there must be also a
formula of L2 doing the same.

L2 is at least as expressive as L1 (written: L1 ⪯𝑒 L2) iff for every
𝜑1 ∈ 𝐿1 there exists 𝜑2 ∈ 𝐿2 such that, for every structure 𝑀 ∈ M,
we have J𝜑1K𝑀1 = J𝜑2K𝑀2 . In other words, every formula of L1 has a
translation in L2 that produces exactly the same truth values on the
structures in M.

It is easy to see that L1 ⪯𝑒 L2 implies L1 ⪯𝑑 L2. Thus, by
contraposition, we also get that L1 ̸⪯𝑑 L2 implies L1 ̸⪯𝑒 L2.

The above notions have been adapted in [9] to compare the
expressivity of many-valued logics by comparing the truth values
that formulas produce on the respective models. E.g., 𝐿2 ⪯𝑒 𝐿1 holds
if every formula 𝜑 of 𝐿2 has a counterpart in 𝐿1 that, on each model,
evaluates to exactly the same truth value as 𝜑 . Unfortunately, that
approach cannot be applied in case (1), where we want to compare
two logical systems with different sets of truth values.

5.1 Quantitative vs. Binary Module Checking
We first show that ATL∗ [F] module checking is not subsumed by
ATL∗ module checking over weighted modules. To do that, however,
we need to fix how the binary reactive semantics of ATL∗ is used
when the evaluation of atomic propositions is quantitative. We deal
with the problem by adapting the concept of designated truth values
𝑃 ⊆ [0, 1] for which a formula is deemed satisfied [35, 48]. In line
with standard practice, we assume that 1 ∈ 𝑃 and 0 ∉ 𝑃 .

Let G be a module. By G𝑃 , we denote G with the weight function
changed to ℓ′ (𝑣, 𝑝) = 1 if ℓ (𝑣, 𝑝) ∈ 𝑃 , and 0 else, i.e., we “defuzzify”
propositions via the designated values.

Theorem 5.1. For every predicate {1} ⊆ 𝑃 ⊆ (0, 1], there is a pair
of weighted modules (G1, 𝑣1) and (G2, 𝑣2) such that:
(i) for every 𝜑 ∈ ATL∗, we have J𝜑K𝑟ATL∗ (G

𝑃
1 , 𝑣1) = J𝜑K𝑟ATL∗ (G

𝑃
2 , 𝑣2);

(ii) and, there exists a formula𝜑 ∈ ATL∗ [F] with J𝜑K𝑟ATL∗ [F] (G1, 𝑣1) ≠
J𝜑K𝑟ATL∗ [F] (G2, 𝑣2).

Proof. Fix an arbitrary 𝑃 . There must be at least two different
truth values 𝑡1 < 𝑡2 in 𝑃 or in its complement 𝑃 . Consider modules
(G1, 𝑣0) and (G2, 𝑣0), both with the structure depicted in Figure 2.
The sole atomic proposition 𝑝 evaluates to 𝑡1 in all of G1, and to
𝑡2 in all of G2. Clearly, G𝑃

1 and G𝑃
2 are the same, so they must

satisfy the same properties of ATL∗. On the other hand, (G1, 𝑣0)
and (G2, 𝑣0) are distinguished by the reactive semantics of ⟨⟨∅⟩⟩X𝑝
in ATL∗ [F]. □

5.2 Quantitative Module vs. Model Checking
We now prove that ATL∗ [F] module checking is not subsumed by
ATL∗ [F] model checking.

Theorem 5.2. There is a pair of weightedmodules (G1, 𝑣1), (G2, 𝑣2)
such that:

(i) for every 𝜑 ∈ ATL∗ [F], we have J𝜑KATL∗ [F] (G1, 𝑣1) =
J𝜑KATL∗ [F] (G2, 𝑣2); and

(ii) there exists a formula𝜑 ∈ ATL∗ [F] with J𝜑K𝑟ATL∗ [F] (G1, 𝑣1) ≠
J𝜑K𝑟ATL∗ [F] (G2, 𝑣2).

Proof. It follows directly from the analogous property for bi-
nary module checking, see [Thm 4][34] and [Thm 1][33]. □

6 CONCLUSION
In this paper, we have addressed the problem of specifying and
verifying MAS interacting with a nondeterministic environment
and whose quality cannot be reduced to a Boolean assessment. Here,
the environment represents an authority that can inhibit the MAS
access to certain paths of the computation tree. The assessment of
the system is quantitative and represents how much the authority
can limit the agents in the MAS from achieving their goals.

As a modeling solution, we have proposed quantitative mod-
ule checking in relation to specifications given in ATL∗ [F] and
ATL[F], the quantitative extensions of ATL∗ and ATL. This allows
reasoning about quality in multi-agent systems that interact with an
environment. Remarkably, no other modeling of module checking
studied in the literature can handle the quantitative setting, which
we propose and whose solution comes at no extra cost. To maintain
the same computational complexity we have used a parsimonious
automata-theoretic approach, from scratch.

We studied the complexity and expressivity of module checking
ATL∗ [F] and ATL[F]-specifications. In relation to expressivity, we
show that ATL∗ [F] module checking is not subsumed neither by
ATL∗ module checking nor by ATL∗ [F] model checking.

ACKNOWLEDGMENTS
This research has been supported by the EU Horizon 2020 Marie
Skłodowska-Curie project with grant agreement No 101105549, the
PNRRMUR project PE0000013-FAIR, as well as by NCBR Poland and
FNR Luxembourg under the PolLux/FNR-CORE project SpaceVote
(POLLUX-XI/14/SpaceVote/2023 and C22/IS/17232062/ SpaceVote).
The work was partially funded also by MUR under the PRIN 2020
projects PINPOINT and RIPER. For the purpose of open access, and
in fulfilment of the obligations arising from the grant agreement,
the authors have applied CC BY 4.0 license to any Author Accepted
Manuscript version arising from this submission.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

933

REFERENCES
[1] T. Ågotnes, W. Van Der Hoek, J. A. Rodríguez-Aguilar, C. Sierra, and M. J.

Wooldridge. 2007. On the Logic of Normative Systems.. In IJCAI.
[2] Thomas Ågotnes, Wiebe Van der Hoek, and Michael Wooldridge. 2010. Robust

normative systems and a logic of norm compliance. Logic Journal of IGPL 18, 1
(2010), 4–30.

[3] Natasha Alechina, Giuseppe De Giacomo, Brian Logan, and Giuseppe Perelli.
2022. Automatic Synthesis of Dynamic Norms for Multi-Agent Systems. In Proc.
of KR 2022. https://doi.org/10.24963/kr.2022/2

[4] Shaull Almagor, Udi Boker, and Orna Kupferman. 2016. Formally reasoning about
quality. Journal of the ACM (JACM) 63, 3 (2016), 1–56.

[5] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time
temporal logic. J. ACM 49, 5 (2002), 672–713. https://doi.org/10.1145/585265.
585270

[6] Benjamin Aminof, Axel Legay, Aniello Murano, Olivier Serre, and Moshe Y. Vardi.
2013. Pushdown module checking with imperfect information. Inf. Comput. 223
(2013), 1–17. https://doi.org/10.1016/j.ic.2012.11.005

[7] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver. 2016.
Autonomous vehicles: challenges, opportunities, and future implications for
transportation policies. Journal of modern transportation 24, 4 (2016), 284–303.

[8] Samik Basu, Partha S. Roop, and Roopak Sinha. 2007. Local Module Checking
for CTL Specifications. Electron. Notes Theor. Comput. Sci. 176, 2 (2007), 125–141.

[9] Francesco Belardinelli, Wojtek Jamroga, Vadim Malvone, Munyque Mittelmann,
Aniello Murano, and Laurent Perrussel. 2022. Reasoning about Human-Friendly
Strategies in Repeated Keyword Auctions. In AAMAS. 62–71.

[10] Patricia Bouyer, Orna Kupferman, Nicholas Markey, Bastien Maubert, Aniello
Murano, and Giuseppe Perelli. 2019. Reasoning about Quality and Fuzziness of
Strategic Behaviours. In IJCAI. https://doi.org/10.24963/ijcai.2019/220

[11] Laura Bozzelli. 2011. New results on pushdown module checking with imperfect
information. In Proc. of the 2nd International Symposium on Games, Automata,
Logics and Formal Verification, GandALF 2011 (EPTCS, Vol. 54). 162–177. https:
//doi.org/10.4204/EPTCS.54.12

[12] Laura Bozzelli and Aniello Murano. 2017. On the Complexity of ATL and ATL∗
Module Checking. In Proc of the 8th International Symposium on Games, Automata,
Logics and Formal Verification, GandALF 2017 (EPTCS, Vol. 256). 268–282. https:
//doi.org/10.4204/EPTCS.256.19

[13] Laura Bozzelli, Aniello Murano, and Adriano Peron. 2010. Pushdown module
checking. Formal Methods Syst. Des. 36, 1 (2010), 65–95. https://doi.org/10.1007/
s10703-010-0093-x

[14] Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby.
2007. Timed Concurrent Game Structures. In Proc. of CONCUR 2007. https:
//doi.org/10.1007/978-3-540-74407-8_30

[15] Nils Bulling and Mehdi Dastani. 2016. Norm-based mechanism design. Artificial
Intelligence 239 (2016), 97–142.

[16] Nils Bulling, Mehdi Dastani, and Max Knobbout. 2013. Monitoring norm viola-
tions in multi-agent systems. In Proc. of AAMAS 2013.

[17] Nils Bulling and Valentin Goranko. 2022. Combining quantitative and qualitative
reasoning in concurrent multi-player games. Auton. Agents Multi Agent Syst. 36,
1 (2022), 2. https://doi.org/10.1007/s10458-021-09531-9

[18] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. 2010. Strategy
Logic. Inf. Comput. 208, 6 (2010), 677–693. https://doi.org/10.1016/j.ic.2009.07.004

[19] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. 2018. Introduction
to Model Checking. Springer International Publishing, Cham, 1–26. https://doi.
org/10.1007/978-3-319-10575-8_1

[20] Mehdi Dastani, John-Jules Ch Meyer, and Davide Grossi. 2013. A logic for
normative multi-agent programs. Journal of Logic and Computation 23, 2 (2013),
335–354.

[21] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. 2004. Three-Valued
Abstractions of Games: Uncertainty, but with Precision. In LICS. IEEE Computer
Society, 170–179.

[22] Louise Dennis, Nick Tinnemeier, and John-Jules Meyer. 2010. Model checking
normative agent organisations. In Int. Workshop on Computational Logic in MAS.
Springer, 64–82.

[23] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet
advertising and the generalized second-price auction: Selling billions of dollars
worth of keywords. American economic review 97, 1 (2007), 242–259.

[24] Edith Elkind, Leslie Ann Goldberg, Paul W Goldberg, and Michael Wooldridge.
2009. On the computational complexity of weighted voting games. Annals of
Mathematics and Artificial Intelligence 56, 2 (2009), 109–131.

[25] E. Allen Emerson and Joseph Y. Halpern. 1986. “Sometimes” and “Not Never”
Revisited: On Branching versus Linear Time Temporal Logic. J. ACM 33, 1 (jan
1986), 151–178. https://doi.org/10.1145/4904.4999

[26] Alessandro Ferrante, Aniello Murano, and Mimmo Parente. 2008. Enriched
𝜇-Calculi Module Checking. Log. Methods Comput. Sci. 4, 3 (2008).

[27] Achille Frigeri, Liliana Pasquale, and Paola Spoletini. 2014. Fuzzy time in linear
temporal logic. ACM Transactions on Computational Logic (TOCL) 15, 4 (2014),
1–22.

[28] Anna Gibson. 2019. Free speech and safe spaces: How moderation policies shape
online discussion spaces. Social Media+ Society 5, 1 (2019), 2056305119832588.

[29] Patrice Godefroid. 2003. Reasoning about Abstract Open Systems with General-
ized Module Checking. In Proc. of EMSOFT 2003.

[30] Erich Grädel, Wolfgang Thomas, and Thomas Wilke (Eds.). 2002. Automata,
Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001]. Springer. https://doi.org/10.1007/3-540-36387-4

[31] Thomas A. Henzinger and Vinayak S. Prabhu. 2006. Timed Alternating-Time
Temporal Logic. In Proc. of FORMATS 2006. https://doi.org/10.1007/11867340_1

[32] Wojciech Jamroga, Beata Konikowska, Damian Kurpiewski, and Wojciech
Penczek. 2020. Multi-valued Verification of Strategic Ability. Fundam. Informati-
cae 175, 1-4 (2020), 207–251. https://doi.org/10.3233/FI-2020-1955

[33] Wojciech Jamroga and Aniello Murano. 2014. On module checking and strategies.
In AAMAS. IFAAMAS/ACM, 701–708.

[34] Wojciech Jamroga and Aniello Murano. 2015. Module Checking of Strategic
Ability. In Proc. of AAMAS 2015. ACM, 227–235.

[35] Beata Konikowska and Wojciech Penczek. 2004. On Designated Values in Multi-
valued CTL* Model Checking. Fundamenta Informaticae 60, 1-4 (2004), 211–224.

[36] Orna Kupferman and Moshe Y. Vardi. 1996. Module checking. In Proc. of CAV
1996, Rajeev Alur and Thomas A. Henzinger (Eds.).

[37] Orna Kupferman and Moshe Y. Vardi. 1997. Module Checking Revisited. In Proc.
of CAV 1997.

[38] Orna Kupferman and Moshe Y. Vardi. 1998. Weak Alternating Automata and Tree
Automata Emptiness. In Proc. of the ACM Symposium on the Theory of Computing,
Jeffrey Scott Vitter (Ed.). https://doi.org/10.1145/276698.276748

[39] Orna Kupferman, Moshe Y. Vardi, and PierreWolper. 2000. An automata-theoretic
approach to branching-time model checking. J. ACM 47, 2 (2000), 312–360.
https://doi.org/10.1145/333979.333987

[40] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. 2001. Module Checking.
Inf. Comput. 164, 2 (2001), 322–344. https://doi.org/10.1006/inco.2000.2893

[41] Khaled Ben Lamine and Froduald Kabanza. 2000. Using fuzzy temporal logic
for monitoring behavior-based mobile robots. In Proc. of IASTED Int. Conf. on
Robotics and Applications. 116–121.

[42] François Laroussinie, NicolasMarkey, andGhassanOreiby. 2006. Model-Checking
Timed. In Proc. FORMATS 2006. https://doi.org/10.1007/11867340_18

[43] Bastien Maubert, Munyque Mittelmann, Aniello Murano, and Laurent Perrussel.
2021. Strategic reasoning in automated mechanism design. In Proc. of the KR
2021.

[44] John-Jules Ch Meyer. 1993. Deontic logic: A concise overview. Deontic Logic in
Computer Science: Normative System Specification (1993), 3–16.

[45] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2014.
Reasoning About Strategies: On the Model-Checking Problem. ACM Trans.
Comput. Log. 15, 4 (2014).

[46] Aniello Murano, Margherita Napoli, and Mimmo Parente. 2008. Program Com-
plexity in Hierarchical Module Checking. In In Proc. of LPAR 2008. https:
//doi.org/10.1007/978-3-540-89439-1_23

[47] Amir Pnueli. 1977. The temporal logic of programs. In Proc. of the Annual
Symposium on Foundations of Computer Science. https://doi.org/10.1109/SFCS.
1977.32

[48] Yaroslav Shramko and Heinrich Wansing. 2021. Truth Values. In The Stanford
Encyclopedia of Philosophy (Winter 2021 ed.), Edward N. Zalta (Ed.). Metaphysics
Research Lab, Stanford University.

[49] Steen Vester. 2015. On the Complexity of Model-Checking Branching and
Alternating-Time Temporal Logics in One-Counter Systemss. In Automated Tech-
nology for Verification and Analysis, Bernd Finkbeiner, Geguang Pu, and Lijun
Zhang (Eds.). Springer.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

934

https://doi.org/10.24963/kr.2022/2
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2012.11.005
https://doi.org/10.24963/ijcai.2019/220
https://doi.org/10.4204/EPTCS.54.12
https://doi.org/10.4204/EPTCS.54.12
https://doi.org/10.4204/EPTCS.256.19
https://doi.org/10.4204/EPTCS.256.19
https://doi.org/10.1007/s10703-010-0093-x
https://doi.org/10.1007/s10703-010-0093-x
https://doi.org/10.1007/978-3-540-74407-8_30
https://doi.org/10.1007/978-3-540-74407-8_30
https://doi.org/10.1007/s10458-021-09531-9
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/11867340_1
https://doi.org/10.3233/FI-2020-1955
https://doi.org/10.1145/276698.276748
https://doi.org/10.1145/333979.333987
https://doi.org/10.1006/inco.2000.2893
https://doi.org/10.1007/11867340_18
https://doi.org/10.1007/978-3-540-89439-1_23
https://doi.org/10.1007/978-3-540-89439-1_23
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

	Abstract
	1 Introduction
	2 Quantitative ATL and ATL*
	3 Quantitative Module Checking
	3.1 Modules
	3.2 Module Checking

	4 Complexity
	5 Expressivity
	5.1 Quantitative vs. Binary Module Checking
	5.2 Quantitative Module vs. Model Checking

	6 Conclusion
	Acknowledgments
	References

