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ABSTRACT
Model Multiplicity (MM) arises when multiple, equally performing

machine learning models can be trained to solve the same predic-

tion task. Recent studies show that models obtained under MMmay

produce inconsistent predictions for the same input. When this oc-

curs, it becomes challenging to provide counterfactual explanations

(CEs), a common means for offering recourse recommendations

to individuals negatively affected by models’ predictions. In this

paper, we formalise this problem, which we name recourse-aware
ensembling, and identify several desirable properties which meth-

ods for solving it should satisfy. We show that existing ensembling

methods, naturally extended in different ways to provide CEs, fail

to satisfy these properties. We then introduce argumentative en-
sembling, deploying computational argumentation to guarantee

robustness of CEs to MM, while also accommodating customis-

able user preferences. We show theoretically and experimentally

that argumentative ensembling satisfies properties that the existing

methods lack, and that the trade-offs are minimal wrt accuracy.
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1 INTRODUCTION
Model Multiplicity (MM), also known as predictive multiplicity or

the Rashomon Effect, refers to a scenario where multiple, equally

performing machine learning (ML) models may be trained to solve

a prediction task [6, 8, 44]. While the existence of multiple mod-

els that achieve the same accuracy is not a problem per se, recent
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literature [6, 44] has drawn attention to the fact that these mod-

els may differ greatly in their internals and might thus produce

inconsistent predictions when deployed. Consider the commonly

used scenario of a loan application, where an individual modelled

by input x with features unemployed status, 33 years of age and

low credit rating applies for a loan. Assume the bank has trained a

set of ML modelsℳ = {𝑀1,𝑀2,𝑀3} to predict whether the loan

should be granted or not. Even though each 𝑀𝑖 may exhibit good

performance overall, their internal differences may lead to conflicts,

e.g. if𝑀1(x) = 𝑀2(x) = 0 (i.e. reject), while𝑀3(x) = 1 (i.e. accept).
Ensembling techniques are commonly used to deal with MM

scenarios [5, 6]. A standard such technique is naive ensembling [5],

where the predictions of several models are aggregated to produce a

single outcome that reflects the opinion of a majority of models. For

instance, naive ensembling applied to our running example would

result in a rejection, as a majority of the models agree that the

loan should not be granted. While ensembling methods have been

shown to be effective in practice, their application to consequential

decision-making tasks raises some important challenges.

Indeed, these methods tend to ignore the need to provide av-

enues for recourse to users negatively impacted by the models’

outputs, which the ML literature typically achieves via the provi-

sion of counterfactual explanations (CEs) for the predictions (see
[31, 46] for recent overviews). Dealing with MM while also tak-

ing CEs into account is non-trivial. Indeed, standard algorithms

designed to generate CEs for single models typically fail to produce

recourse recommendations that are valid across equally performing

models [41, 51]. This phenomenon may have troubling implications

as a lack of robustness may lead users to question whether a CE is

actually explaining the underlying decision-making task and is not

just an artefact of a (subset of) model(s).

Another challenge is that naive ensembling ignores other meta-

evaluation aspects of models, like fairness, robustness, and inter-

pretability, while it has been shown that models under MM can

demonstrate substantial differences in these regards [14, 17, 56] and

users may have strong preferences for some of these aspects, e.g.

they may prefer model fairness to accuracy.

In this paper, we frame the recourse problem under MM formally

and propose different approaches to accommodate recourse as well

as user preferences. After covering related work (§2) and the neces-

sary preliminaries (§3), we make the following contributions. In §4,

we purpose a formalisation of the problem and several desirable
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properties for ensembling methods for recourse under MM.We also

consider two natural extensions of naive ensembling to accommo-

date generation of CEs and show that they may violate some of the

properties we define. We then propose argumentative ensembling in
§5, a novel technique rooted in computational argumentation (see

[2, 3] for overviews). We show that it is able to solve the recourse

problem effectively while also naturally incorporating user prefer-

ences. We present extensive experiments in §6, showing that our

framework always provides valid recourse under MM as well as

better evaluations on a number of metrics without compromising

the individual prediction accuracies. We also demonstrate the use-

fulness of specifying user preferences in our framework. We then

conclude in §7. The implementation is publicly available at https:

//github.com/junqi-jiang/recourse_under_model_multiplicity.

2 RELATEDWORK
Model Multiplicity. MM has been shown to affect several dimen-

sions of trustworthyML. In particular, among equally accurate mod-

els, there could be different fairness characteristics [14, 24, 54, 65],

levels of interpretability [13, 56, 57], model robustness evaluations

[17] and even inconsistent explanations [7, 21, 29, 41–43, 45].

Recent attempts have been made to address the MM problem.

Black et al. [6] suggested candidate models should be evaluated

across additional dimensions other than accuracy (e.g. robustness

or fairness evaluation thresholds). They provided a potential solu-

tion based on applying meta-rules to filter out undesirable models,

then using ensemble methods to aggregate them, or randomly se-

lecting one of them. Extending these ideas, the selective ensembling

method of [5] embeds statistical testing into the ensembling pro-

cess, such that when the numbers of candidate models predicting an

input to the top two classes are close or equal (which could happen

under naive ensembling strategies like majority voting), an absten-

tion signal can be flagged for relevant stakeholders. Xin et al. [66]

looked at decision trees and proposed an algorithm to enumerate

all models obtainable under MM; Roth et al. [55] instead proposed a

model reconciling procedure to resolve conflicts between disagree-

ing models. Meanwhile, a number of works [35, 44, 57, 64] propose

metrics to quantify the extent of MM in prediction tasks.

Counterfactual Explanations and MM. A CE for a prediction

of an input by an ML model is typically defined as another data

point that minimally modifies the input such that the ML model

would yield a desired classification [59, 63]. CEs are often advocated

as a means to provide algorithmic recourse for data subjects, and as

such, modern algorithms have been extended to enforce additional

desirable properties such as actionability [61], plausiblity [19] and

diversity [48]. We refer to [31] for a recent overview.

More central to the MM problem, Pawelczyk et al. [51] pointed

out that CEs on data manifold are more likely to be robust under

MM than minimum-distance CEs. Leofante et al. [41] proposed an

algorithm for a given ensemble of feed-forward neural networks

to compute robust CEs that are provably valid for all models in

the ensemble. Also related to MM is the line of work that focuses

on the robustness of CEs against model changes, e.g. parameter

updates due to model retraining on the same or slightly shifted data

distribution [7, 10, 23, 27, 33, 37, 38, 49, 60]. These studies usually

aim to generate CEs that are robust across retrained versions of the

same model, which is different from MM where several (potentially

structurally different) models are targeted together.

Computational Argumentation. This discipline, inspired by

the seminal [22], amounts to a set of formalisms for dealing with

conflicting information, as demonstrated in numerous application

areas, e.g. online debate [11], scheduling [15] and judgmental fore-

casting [36]. There have also been a broad range of works (see

[16, 32, 62] for overviews) demonstrating its capability for explain-

ing the outputs of AI models, e.g. neural networks [18, 52], Bayesian

classifiers [58] and random forests [53]. To the best of our knowl-

edge, the only work applying computational argumentation to MM

specifically is [1], where the introduced method extracts and selects

winning rules from an ensemble of classifiers. This differs from

our method as we consider pre-existing CEs computed for single

models, rather than rules, while also accommodating preferences.

3 PRELIMINARIES
Given a set of classification labels ℒ, amodel is a mapping𝑀 ∶ R𝑛 →
ℒ; we denote that 𝑀 classifies an input x ∈ R𝑛 as ℓ iff 𝑀(x) = ℓ .

(Note that binary classification amounts toℒ = {0, 1}: for simplicity,

this will be the focus of all illustrations and of the experiments in

§6.) Then, a counterfactual explanation (CE) for x, given𝑀 , is some

c ∈ R𝑛 ∖ {x} such that𝑀(c) ≠ 𝑀(x), which may be optimised by

some distance metric between the inputs.

A bipolar argumentation framework (BAF) [12] is a tuple ∐︀𝒳 ,𝒜,𝒮̃︀,
where 𝒳 is a set of arguments,𝒜⊆𝒳×𝒳 is a directed relation of di-
rect attack and𝒮⊆𝒳×𝒳 is a directed relation of direct support. Given
a BAF ∐︀𝒳 ,𝒜,𝒮̃︀, for any 𝛼1 ∈𝒳 , we refer to𝒜(𝛼1)={𝛼2⋃︀(𝛼2, 𝛼1) ∈

𝒜} as 𝛼1’s direct attackers and to 𝒮(𝛼1) = {𝛼2⋃︀(𝛼2, 𝛼1) ∈ 𝒮} as

𝛼1’s direct supporters. Then, an indirect attack from 𝛼𝑥 on 𝛼𝑦 is a

sequence 𝛼1, 𝑟1, . . . , 𝑟𝑛−1, 𝛼𝑛 , where 𝑛 ≥ 3, 𝛼1 = 𝛼𝑥 , 𝛼𝑛 = 𝛼𝑦 , 𝑟1 ∈ 𝒜
and 𝑟𝑖 ∈ 𝒮 ∀𝑖 ∈ {2, . . . , 𝑛 − 1}. Similarly, a supported attack from

𝛼𝑥 on 𝛼𝑦 is a sequence 𝛼1, 𝑟1, . . . , 𝑟𝑛−1, 𝛼𝑛 , where 𝑛 ≥ 3, 𝛼1 = 𝛼𝑥 ,

𝛼𝑛 = 𝛼𝑦 , 𝑟𝑛−1 ∈ 𝒜 and 𝑟𝑖 ∈ 𝒮 ∀𝑖 ∈ {1, . . . , 𝑛 − 2}. Straightforwardly,

a supported attack on an argument implies a direct attack.

We will also use notions of acceptability of sets of arguments in

BAFs [12]. A set of arguments𝑋 ⊆ 𝒳 , also called an extension, is said
to set-attack any 𝛼1 ∈ 𝒳 iff there exists an attack (whether direct,

indirect or supported) from some 𝛼2 ∈ 𝑋 on 𝛼1. Meanwhile,𝑋 is said

to set-support any 𝛼1 ∈ 𝒳 iff there exists a direct support from some

𝛼2 ∈ 𝑋 on 𝛼1.
1
Then, a set 𝑋 ⊆ 𝒳 defends any 𝛼1 ∈ 𝒳 iff ∀𝛼2 ∈ 𝒳 ,

if {𝛼2} set-attacks 𝛼1 then ∃𝛼3 ∈ 𝑋 such that {𝛼3} set-attacks

𝛼2. Any set 𝑋 ⊆ 𝒳 is then said to be conflict-free iff ∄𝛼1, 𝛼2 ∈ 𝑋
such that {𝛼1} set-attacks 𝛼2, and safe iff ∄𝛼3 ∈ 𝒳 such that 𝑋

set-attacks 𝛼3 and either: 𝑋 set-supports 𝛼3; or 𝛼3 ∈ 𝑋 . (Note that a

safe set is guaranteed to be conflict-free.) The notion of a set 𝑋 ⊆ 𝒳

being d-admissible (based on admissibility in [22]) requires that𝑋 is

conflict-free and defends all of its elements. This notion is extended

to account for safe sets: 𝑋 is said to be s-admissible iff it is safe and

defends all of its elements. (Thus an s-admissible set is guaranteed

to be d-admissible.) Further, 𝑋 is said to be c-admissible iff it is

conflict-free, closed for 𝒮 and defends all of its elements. Finally, 𝑋

is said to be d-preferred (respectively, s-preferred, c-preferred) iff it is

d-admissible (respectively, s-admissible, c-preferred) and maximal

wrt set-inclusion.

1

In [12], set-supports are defined via sequences of supports, which we do not use here.
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4 RECOURSE UNDER MODEL MULTIPLICITY
As mentioned in §1, a common way to deal with MM in practice is

to employ ensembling techniques, where the prediction outcomes

of several models are aggregated to produce a single outcome. Ag-

gregation can be performed in different ways, as discussed in [5, 6].

In the following, we formalise a notion of naive ensembling, adopted
in [6], and also known as majority voting, which will serve as a

baseline for our analysis.
2

Definition 4.1. Given an input x, a set of modelsℳ and a set of

labels ℒ, we define the set of top labels ℒ𝑚𝑎𝑥 ⊆ ℒ as:

ℒ𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥ℓ𝑖∈ℒ⋃︀{𝑀𝑗 ∈ ℳ⋃︀𝑀𝑗(x) = ℓ𝑖}⋃︀.
Then we then useℳ

𝑛
(x) ∈ ℒ𝑚𝑎𝑥 to denote the aggregated clas-

sification by naive ensembling. In the cases where ⋃︀ℒ𝑚𝑎𝑥 ⋃︀ > 1, we

selectℳ
𝑛
(x) from ℒ𝑚𝑎𝑥 randomly. With an abuse of notation,

we also letℳ
𝑛
= {𝑀𝑗 ∈ ℳ⋃︀𝑀𝑗(x) = ℳ𝑛

(x)} denote the set of
models that agree on the aggregated classification.

Coming back to our loan example where𝑀1 and𝑀2 reject the

loan (𝑀1(x) = 𝑀2(x) = 0) while 𝑀3 accepts it (𝑀3(x) = 1), we

obtainℳ
𝑛
(x) = 0 andℳ

𝑛
= {𝑀1,𝑀2}. Naive ensembling is

known to be an effective strategy to mediate conflicts between

models and is routinely used in practical applications. However,

in this paper, we take an additional step and aim to generate CEs

providing recourse for a user that has been impacted byℳ
𝑛
(x).

Recent work by [41] has shown that standard algorithms designed

to generate CEs for single models typically fail to produce recourse

recommendations that are robust acrossℳ
𝑛
. One natural idea to

address this would be to extend naive ensembling to account for

CEs. Next, we formalise this idea in terms of several properties that

we deem important in this setting. We then analyse two concrete

methods extending naive ensembling in terms of the properties.

4.1 Problem Statement and Desirable Properties
Consider a non-empty set of modelsℳ={𝑀1, . . . ,𝑀𝑚} and, for an

input x, assume a set 𝒞(x)={c1, . . . , c𝑚} where each c𝑖 ∈ 𝒞(x) is a
CE for x, given𝑀𝑖 . In the rest of the paper, wherever it is clear that

we refer to a given x, we use 𝒞 and omit its dependency on x for

readability. Our aim is to solve the problem outlined below.

Problem: Recourse-Aware Ensembling (RAE)
Input: input x, setℳ of models, set 𝒞 of CEs

Output: “optimal” set 𝑆 ⊆ℳ∪ 𝒞 of models and CEs.

To characterise optimality, we propose a number of desirable

properties for the outputs of ensembling methods. We refer to these

outputs as solutions for RAE. The most basic requirement requires

that both models and CEs in the output are non-empty.

Definition 4.2. An ensembling method satisfies non-emptiness
iff for any given input x, setℳ of models and set 𝒞 of CEs, any

solution 𝑆 ⊆ℳ∪ 𝒞 is such that 𝑆 ∩ℳ ≠ ∅ and 𝑆 ∩ 𝒞 ≠ ∅.

Specifically, non-emptiness ensures that the RAEmethod returns

some models and some CEs. We then look to ensure that the RAE

method returns a non-trivial set of models, as formalised next.

2

It should be noted that, in [6], the case where there is no majority is not discussed.

Definition 4.3. An ensembling method satisfies non-triviality iff

for any given input x, setℳ of models and set 𝒞 of CEs, any

solution 𝑆 ⊆ℳ∪ 𝒞 is such that ⋃︀𝑆 ∩ℳ⋃︀ > 1.

Clearly, the returned models should not disagree amongst them-

selves on the classification, which leads to our next requirement.

Definition 4.4. An ensembling method satisfies model agreement
iff for any given input x, setℳ of models and set 𝒞 of CEs, any

solution 𝑆 ⊆ℳ∪𝒞 is such that ∀𝑀𝑖 ,𝑀 𝑗 ∈ 𝑆 ∩ℳ,𝑀𝑖(x) = 𝑀𝑗(x).

The next property, which itself requires model agreement to be

satisfied, checks whether the set of returned models is among the

largest of the agreeing sets of models, a motivating property of

naive ensembling.

Definition 4.5. An ensembling method satisfies majority vote iff
it satisfies model agreement and for any given input x, setℳ of

models, set 𝒞 of CEs and set ℒ of labels, any solution 𝑆 ⊆ ℳ∪ 𝒞

is such that, letting ℓ𝑖 = 𝑀𝑗(x) for all 𝑀𝑗 ∈ 𝑆 ∩ℳ, ∄ℓ𝑘 ∈ ℒ ∖ {ℓ𝑖}

such that ⋃︀{𝑀𝑙 ∈ ℳ⋃︀𝑀𝑙(x) = ℓ𝑘}⋃︀ > ⋃︀{𝑀𝑙 ∈ ℳ⋃︀𝑀𝑙(x) = ℓ𝑖}⋃︀.

Next, we consider the robustness of recourse. Previous work [41]

considered a very conservative notion of robustness whereby ex-

planations are required to be valid for all models inℳ. While this

might be desirable in some cases, we highlight that satisfying this

property may not always be feasible in practice. We therefore pro-

pose a relaxed notion of robustness, which requires that CEs are

valid only for the models that support them.

Definition 4.6. An ensembling method satisfies counterfactual
validity iff for any given input x, setℳ of models and set 𝒞 of CEs,

any solution 𝑆 ⊆ℳ∪𝒞 is such that ∀𝑀𝑖 ∈ 𝑆 ∩ℳ and ∀c𝑗 ∈ 𝑆 ∩ 𝒞,
𝑀𝑖(c𝑗) ≠ 𝑀𝑖(x).

While counterfactual validity is a fundamental requirement for

any sound ensembling method, one also needs to ensure that the

solutions it generates are coherent, as formalised below.

Definition 4.7. An ensembling method satisfies counterfactual
coherence iff for any given input x, setℳ of models and set 𝒞

of CEs, any solution 𝑆 ⊆ ℳ ∪ 𝒞, whereℳ = {𝑀1, . . . ,𝑀𝑚} and

𝒞 = {c1, . . . , c𝑚}, is such that ∀𝑖 ∈ {1, . . . ,𝑚},𝑀𝑖 ∈ 𝑆 iff c𝑖 ∈ 𝑆 .

Intuitively coherence requires that (i) a CE is returned only if

it is supported by a model and (ii) when the CE is chosen, then its

corresponding model must be part of the support. This ultimately

guarantees strong justification as to why a given recourse is sug-

gested since selected models and their reasoning (represented by

their CEs) are assessed in tandem.

The properties defined above may not be all satisfiable at the

same time in practice. Next, we discuss two methods extending

naive ensembling towards solving RAE, and explore their satisfac-

tion (or otherwise) of the properties.

4.2 Extending Naive Ensembling for Recourse
We now present two strategies that leverage naive ensembling to

solve RAE. In particular, we use the relationship between models

in the ensembleℳ
𝑛
and their corresponding CEs as follows.

Definition 4.8. Consider an input x, a setℳ of models and a

set 𝒞 of CEs. Letℳ
𝑛
⊆ℳ be the set of models obtained by naive

ensembling. We define the set of naive CEs as:

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

956



𝒞
𝑛
= {c𝑖 ∈ 𝒞 ⋃︀ 𝑀𝑖 ∈ ℳ

𝑛
};

and the set of valid CEs as:
𝒞
𝑣
= {c𝑖 ∈ 𝒞 ⋃︀ 𝑀𝑖 ∈ ℳ

𝑛
∧ ∀𝑀𝑗 ∈ ℳ

𝑛
,𝑀 𝑗(c𝑖) ≠ 𝑀𝑗(x)}.

Then, two possible solutions to RAE are 𝑆
𝑛
= ℳ

𝑛
∪ 𝒞

𝑛
, named

augmented ensembling, or 𝑆𝑣 =ℳ𝑛
∪ 𝒞

𝑣
, named robust ensembling.

Intuitively, augmented ensembling suggests taking all the CEs in

𝒞 that correspond to the models inℳ
𝑛
. Meanwhile, robust ensem-

bling extends augmented ensembling by enforcing the additional

constraint that CEs are selected only if they are valid for all mod-

els inℳ
𝑛
. We now provide an illustrative example to clarify the

results produced by the two strategies.

Example 4.9. Considerℳ= {𝑀1,𝑀2,𝑀3,𝑀4,𝑀5} and an input

x such that 𝑀1(x) = 𝑀2(x) = 𝑀3(x) = 0 and 𝑀4(x) = 𝑀5(x) = 1.
Let 𝒞 = {c1, c2, c3, c4, c5} be the set of CEs generated for x, i.e.
𝑀1(c1) = 𝑀2(c2) = 𝑀3(c3) = 1, while 𝑀4(c4) = 𝑀5(c5) = 0.

Applying naive ensembling toℳ yieldsℳ
𝑛
= {𝑀1,𝑀2,𝑀3} and

ℳ
𝑛
(x) = 0. Then, the set of naive CEs is 𝒞𝑛 = {c1, c2, c3}, and thus

augmented ensembling gives 𝑆
𝑛
= {𝑀1,𝑀2,𝑀3, c1, c2, c3}. Now,

assume that c1 is invalid for 𝑀2 (i.e. 𝑀2(c1) = 0), c2 is invalid for

𝑀1, c3 is invalid for𝑀2, and all three CEs are otherwise valid for all

models inℳ
𝑛
. Then, then the set of valid CEs is empty, i.e. 𝒞

𝑣
= ∅,

and thus robust ensembling gives 𝑆
𝑣
= {𝑀1,𝑀2,𝑀3}.

This example shows that both methods host major drawbacks:

augmented ensembling may produce CEs which are invalid and

thus it is not robust to MM, while robust ensembling is prone to

returning no CEs. We now present a theoretical analysis to assess

the extent to which augmented and robust ensembling are able to

satisfy the properties given in Definitions 4.2 to 4.7.

Theorem 4.10. Augmented ensembling satisfies non-emptiness,
model agreement, majority vote and counterfactual coherence. It satis-
fies non-triviality if ⋃︀ℳ⋃︀>2. It does not satisfy counterfactual validity.

Proof. By Def. 4.1, it can be seen by inspection that ⋃︀ℳ
𝑛
⋃︀>0.

Thus, non-emptiness is satisfied. Again by inspection of the same

definition,∀𝑀𝑖 ,𝑀 𝑗 ∈ ℳ
𝑛
,𝑀𝑖(x) = 𝑀𝑗(x). Thus, model agreement

is satisfied. We can also see that ∄ℓ𝑖 ∈ ℒ ∖ {ℳ
𝑛
(x)} such that

⋃︀{𝑀𝑗 ∈ ℳ⋃︀𝑀𝑗(x) = ℓ𝑖}⋃︀ > ⋃︀ℳ
𝑛
⋃︀. Thus, majority vote is satisfied.

By Defs. 4.1 and 4.8, it can be seen that ∀𝑀𝑖 ∈ ℳ and ∀c𝑖 ∈ 𝒞,
𝑀𝑖 ∈ 𝑆 iff c𝑖 ∈ 𝑆 . Thus, counterfactual coherence is satisfied.

Example 4.9 shows that counterfactual validity is not satisfied

by providing a counterexample.

Finally, the partial satisfaction of non-triviality can be proven by

contradiction: assume ⋃︀ℳ⋃︀=𝑛, 𝑛>2 but ⋃︀ℳ
𝑛
⋃︀=1. By Def. 4.1,ℳ

𝑛

is the largest subset ofℳ containing models with the same classi-

fication outcome. However, for binary classification, this implies

that the remaining 𝑛 − 1 all agree on the opposite classification, i.e.

⋃︀ℳ∖ℳ
𝑛
⋃︀> ⋃︀ℳ

𝑛
⋃︀, which leads to a contradiction. □

Theorem 4.11. Robust ensembling satisfies model agreement, ma-
jority vote and counterfactual validity. It satisfies non-triviality if
⋃︀ℳ⋃︀ > 2. It does not satisfy non-emptiness or counterfactual coherence.

Proof. The proofs for model agreement, majority vote and non-

triviality are analogous to those in Theorem 4.10 and so are omitted.

It can be seen by inspection of Definition 4.8 that ∀𝑀𝑖 ∈ℳ
𝑛
and

∀c𝑗 ∈𝒞𝑣 ,𝑀𝑖(c𝑗)≠𝑀𝑖(x). Thus, counterfactual validity is satisfied.

ℳ
𝑛
∪ 𝒞

𝑛
ℳ

𝑛
∪ 𝒞

𝑣
ℳ

𝑎
∪ 𝒞

𝑎

non-emptiness ✓ ✓

non-triviality ✓
∗

✓
∗

✓
∗

model agreement ✓ ✓ ✓

majority vote ✓ ✓

counterfactual validity ✓ ✓

counterfactual coherence ✓ ✓

Table 1: Augmented (ℳ𝑛
∪ 𝒞

𝑛) and robust (ℳ𝑛
∪ 𝒞

𝑣) ensem-
bling, as well as our argumentative approach (ℳ𝑎

∪ 𝒞
𝑎 , de-

fined in §5), assessed against the desirable properties defined
in §4.1. Satisfaction of a property is shown by✓, while partial
satisfaction under given conditions is shown by✓∗.

Example 4.9 shows that non-emptiness and counterfactual co-

herence are not satisfied by providing a counterexample. □

These results, summarised in Table 1, demonstrate that there

may exist cases in which both augmented and robust ensembling

fail to solve RAE satisfactorily. This has strong implications on

the quality of the results obtained in practice, as we will show

experimentally in §6. Further, these methods provide no way to

take into account users’ preferences over the models. As previously

mentioned (see §1 and §2), there could be different characteristics

among the models inℳ in terms of meta-evaluation aspects, e.g. a

model’s fairness, robustness, and simplicity. Depending on the task,

a model’s fairness might be specified as being more important than

its robustness or simplicity. In such cases, it would be desirable to

have a principled way to rank models according to the preference

specification, as promoted in [6]. The combination of these defi-

ciencies motivates the need for a richer ensembling framework to

solve RAE while incorporating user preferences, given next.

5 ARGUMENTATIVE ENSEMBLING
We now present our method for ensembling models and CEs which

inherently supports specifying preferences over models; then we

undertake a theoretical analysis of its properties.

5.1 Definition
We start by formalising ways to incorporate the aforementioned

preferences over models. These preferences could be obtained by

any information, e.g. meta-rules over models as suggested in [6], but

we will assume that they are extracted wrt properties of the models,

e.g. their accuracy or (a metric representing) their simplicity.

Definition 5.1. Given a setℳ of models, a set 𝒫 of properties is
such that ∀𝜋 ∈ 𝒫 , 𝜋 ∶ ℳ → R is a total function.

We then define a preference over the properties such that users

can impose a ranking of priority over them. Here and onwards, for

simplicity we use total orders, denoted ⪯, over any set 𝑆 such that,

as usual, for any 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 , 𝑠𝑖 ≺ 𝑠 𝑗 iff 𝑠𝑖 ⪯ 𝑠 𝑗 and 𝑠𝑖 ⇑⪰ 𝑠 𝑗 . Also as

usual, we say that 𝑠𝑖 ≃ 𝑠 𝑗 iff 𝑠𝑖 ⪯ 𝑠 𝑗 and 𝑠𝑖 ⪰ 𝑠 𝑗 .

Definition 5.2. Given a set 𝒫 of properties, a property preference
⪯𝒫 is a total order over 𝒫 .
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Model preferences can be defined using property preferences. In

the following example, we define one way for doing so.

Example 5.3. Consider the same models as in Example 4.9 and a

set of properties𝒫={𝜋1, 𝜋2}where 𝜋1, 𝜋2 represent model accuracy

and simplicity, respectively, with a property preference ⪯𝒫 such

that 𝜋1≻𝒫𝜋2 and values for the satisfaction of properties as follows.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5

𝜋1 (accuracy) 0.85 0.87 0.86 0.86 0.87

𝜋2 (simplicity) 0 0.75 1 0.5 0.75

A simple model preference ⪯ℳ overℳ may be such that, for

any 𝑀𝑖 ,𝑀 𝑗 ∈ ℳ, 𝑀𝑖 ≻ℳ 𝑀𝑗 iff: (i) 𝜋1(𝑀𝑖) > 𝜋1(𝑀𝑗); or (ii)

𝜋1(𝑀𝑖) = 𝜋1(𝑀𝑗) and 𝜋2(𝑀𝑖) > 𝜋2(𝑀𝑗). This ⪯ℳ is a total order

overℳ and results in𝑀2 ≃ℳ 𝑀5 ≻ℳ 𝑀3 ≻ℳ 𝑀4 ≻ℳ 𝑀1.

Other ways to define preferences over models from preferences

over properties of models can be defined, e.g. based on more sophis-

ticated notions of dominance. We will assume some given notion of

total preference over models, as follows, ignoring how it is obtained.

Definition 5.4. Given a setℳ of models, a model preference ⪯ℳ
overℳ is a total order overℳ.

How can we incorporate these model preferences into the en-

sembling, while still satisfying the properties defined in §4.1? To

tackle this problem, we use bipolar argumentation as follows.
3

Definition 5.5. The BAF corresponding to input x, setℳ of mod-

els, set 𝒞 of CEs and model preference ⪯ℳ is ∐︀𝒳 ,𝒜,𝒮̃︀ with:

● 𝒳 =ℳ∪ 𝒞;

● 𝒜 ⊆ (ℳ×ℳ) ∪ (ℳ× 𝒞) ∪ (𝒞 ×ℳ) where:

– ∀𝑀𝑖 ,𝑀 𝑗 ∈ℳ, (𝑀𝑖 ,𝑀 𝑗)∈𝒜 iff𝑀𝑖(x)≠𝑀𝑗(x),𝑀𝑖 ⪰ℳ𝑀𝑗 ;

– ∀𝑀𝑖 ∈ℳ and c𝑗 ∈𝒞 where 𝑀𝑖(c𝑗)=𝑀𝑖(x), (𝑀𝑖 , c𝑗) ∈ 𝒜
iff𝑀𝑖 ⪰ℳ 𝑀𝑗 and (c𝑗 ,𝑀𝑖) ∈ 𝒜 iff𝑀𝑗 ⪰ℳ 𝑀𝑖 ;

● 𝒮 ⊆ (ℳ×𝒞) ∪ (𝒞 ×ℳ) where for any𝑀𝑖 ∈ ℳ and c𝑗 ∈ 𝒞,
(𝑀𝑖 , c𝑗), (c𝑗 ,𝑀𝑖) ∈ 𝒮 iff 𝑖 = 𝑗 .

Here, a model attacks another model if they disagree on the

prediction and the latter is not strictly preferred to the former.

This means that models which are outperformed with regards to

preferences must be defended by more-preferred, agreeing models

in order to be considered acceptable. Models and CEs are treated

similarly, with the CEs inheriting the preferences from the models

by which they were generated, and attacks being present between

them when the model considers the CE invalid. This, along with

the fact that models and their CEs support one another, ensures

that the models are inherently linked to their reasoning, in the form

of their CEs, and conflicts are drawn not only when two models’

predictions differ, but also when their reasoning differs.

Argumentative ensembling makes use of the set of s-preferred

sets of arguments, referred to as 𝑃𝑠 , in the corresponding BAF

∐︀𝒳 ,𝒜,𝒮̃︀, in order to resolve the MM problem.

Definition 5.6. Consider an input x, a setℳ of models, a set 𝒞 of

CEs, a set ℒ of labels and a model preference ⪯ℳ. Let the largest

s-preferred sets for the corresponding BAF ∐︀𝒳 ,𝒜,𝒮̃︀ be defined as:

3

We considered using abstract AFs [22], but we found that bipolar AFs are more

suitable, given that models and CEs can be naturally seen as supporting one another.

Figure 1: BAF for Example 5.7 where: models’ predictions
for the input x are given as superscripts, e.g. 𝑀1(x) = 0

but 𝑀4(x) = 1; reciprocal supports are represented by dual-
headed green arrows labelledwith+ and standard (reciprocal)
attacks are represented by single-headed (dual-headed, re-
spectively) red arrows labelled with −.

𝑋𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋∈𝑃𝑠 ⋃︀𝑋 ⋃︀.
Then, the solution to RAE by argumentative ensembling is defined

as 𝑆
𝑎
∈ 𝑋𝑚𝑎𝑥 , whereℳ

𝑎
= 𝑆

𝑎
∩ℳ and 𝒞

𝑎
= 𝑆

𝑎
∩ 𝒞 and in the

case of ⋃︀𝑋𝑚𝑎𝑥 ⋃︀ > 1, we select 𝑆
𝑎
from 𝑋𝑚𝑎𝑥 randomly. We also let

ℳ
𝑎
(x) = ℓ𝑖 ∈ ℒ where𝑀𝑗(x) = ℓ𝑖 for all𝑀𝑗 ∈ ℳ

𝑎
.

Note that, alternatively, when ⋃︀𝑋𝑚𝑎𝑥 ⋃︀ > 1, we could choose to

report all viable resulting ensembles in 𝑋𝑚𝑎𝑥 rather than a random

one as defined above, so that more informed decisions could be

made by relevant stakeholders. We leave this to future work.

The following example demonstrates how quickly the problem,

when preferences are included, can become complex. This is the

case even with only five models, far fewer than usual in MM.

Example 5.7. The BAF corresponding to input, models and CEs as

in Example 5.3 is ∐︀𝒳 ,𝒜,𝒮̃︀ with (see Fig. 1): 𝒳 = {𝑀1, 𝑀2, 𝑀3, 𝑀4,

𝑀5, c1, c2, c3, c4, c5};𝒜 = {(𝑀2,𝑀4), (𝑀2,𝑀5), (𝑀2, c1), (𝑀2, c3),
(𝑀3,𝑀4), (𝑀3, c4), (𝑀4,𝑀1), (𝑀5,𝑀1), (𝑀5,𝑀2), (𝑀5,𝑀3), (c2,𝑀1)};

and 𝒮 = {(𝑀1, c1), (𝑀2, c2), (𝑀3, c3), (𝑀4, c4), (𝑀5, c5), (c1,𝑀1),

(c2,𝑀2), (c3,𝑀3), (c4,𝑀4), (c5,𝑀5)}. This leads to 𝑃𝑠 = {{𝑀2, c2},
{𝑀4, 𝑀5, c4, c5}}, and thus 𝑆

𝑎
= {𝑀4, 𝑀5, c4, c5} andℳ𝑎

(x) = 1.

This example shows how the use of CEs in the ensembling di-

rectly results in the prediction being reversed, relative to the other

ensembling methods, violating majority vote. This is due to the fact

that, while the preferences over the two sets of models are roughly

similar, the validity of the CEs for the models selected by the aug-

mented and robust ensemblings is very poor. This means that when

a CE that is valid for all models is required, some compromise must

be made on the model selection, as we demonstrated.

5.2 Theoretical Analysis
We will now undertake a theoretical analysis of argumentative en-

sembling, demonstrating some of the desirable behaviours thereof

via properties. First, we consider the properties introduced in §4.1.

Theorem 5.8. Argumentative ensembling satisfies non-emptiness,
model agreement, counterfactual validity and counterfactual coher-
ence. It satisfies non-triviality if for some𝑀𝑖 ∈ ℳ, where ∄𝑀𝑗 ∈ ℳ∖

{𝑀𝑖} such that 𝑀𝑗 ≻ℳ 𝑀𝑖 , ∃𝑀𝑘 ∈ ℳ such that 𝑀𝑘(x) = 𝑀𝑖(x),
𝑀𝑘(c𝑖)≠𝑀𝑘(x) and𝑀𝑖(c𝑘)≠𝑀𝑖(x). It does not satisfy majority vote.
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Proof. Let us first prove counterfactual coherence. By Def. 5.5,

∀𝑀𝑖 ∈ ℳ and ∀c𝑗 ∈ 𝒞, (𝑀𝑖 , c𝑗), (c𝑗 ,𝑀𝑖) ∈ 𝒮 . Thus, there exists an

indirect attack on any 𝑀𝑖 ∈ ℳ iff there exists a direct attack on

c𝑖 ∈ 𝒞. Likewise, there exists an indirect attack on any c𝑖 ∈ 𝒞 iff there

exists a direct attack on𝑀𝑖 ∈ ℳ. Then, lettingℳ= {𝑀1, . . . ,𝑀𝑚}

and 𝒞 = {c1, . . . , c𝑚}, since we know any 𝑋 ∈ 𝑃𝑠 is maximal wrt 𝒳

by Def. 5.6, 𝑋 must be such that ∀𝑖 ∈ {1, . . . ,𝑚},𝑀𝑖 ∈ 𝑆 iff c𝑖 ∈ 𝑆 .
Let us prove non-emptiness by contradiction. Assume that ∃𝑋 ∈

𝑃𝑠 such that 𝑋 ∩ℳ = ∅ or 𝑋 ∩ 𝒞 = ∅. We know from the above

proof that,∀𝑋 ∈ 𝑃𝑠 ,𝑋∩ℳ ≠ ∅ iff𝑋∩𝒞 ≠ ∅. Then, by the definition

of s-preferred extensions (see §3), it must be the case that ∀𝑋 ∈ 𝑃𝑠 ,

𝑋 = ∅. Based on the fact that, by Def. 5.4, ⪯ℳ is a total ordering

and thus transitive, this is not possible as it will always be the

case that ∃𝑀𝑖 ∈ ℳ such that ∄𝑀𝑗 ∈ ℳ where 𝑀𝑗 ≻ℳ 𝑀𝑖 . Thus,

by Def. 5.5, either 𝒜(𝑀𝑖) ∪ 𝒜(c𝑖) = ∅ or ∀𝛼𝑘 ∈ 𝒜(𝑀𝑖) ∪ 𝒜(c𝑖),
𝑀𝑖 ∈ 𝒜(𝛼𝑘) or c𝑖 ∈ 𝒜(𝛼𝑘), meaning {𝑀𝑖 , c𝑖} is either unattacked
or is able to defend itself, therefore would be acceptable in at least

one s-preferred extension, and we have the contradiction.

Let us prove model agreement by contradiction. Assume that

∃𝑀𝑖 ,𝑀 𝑗∈ℳ such that𝑀𝑖(x)≠𝑀𝑗(x) and ∃𝑋∈𝑃𝑠 such that𝑀𝑖 ,𝑀 𝑗 ∈

𝑋 . By Def. 5.5, it follows that ∃(𝑀𝑖 ,𝑀 𝑗) ∈ 𝒜 or ∃(𝑀𝑗 ,𝑀𝑖) ∈ 𝒜,

which cannot be the case in an s-preferred set, which must be

conflict-free (see §3), and so we have the contradiction.

Let us prove counterfactual validity by contradiction. Assume

that ∃𝑀𝑖 ∈ℳ and ∃c𝑗 ∈𝒞 such that𝑀𝑖(c𝑗)=𝑀𝑖(x) and ∃𝑋 ∈𝑃𝑠 such
that𝑀𝑖 , c𝑗 ∈𝑋 . By Definition 5.5, it can be seen that ∃(𝑀𝑖 , c𝑗)∈𝒜 or

∃(c𝑗 ,𝑀𝑖)∈𝒜, which cannot be the case in an s-preferred set, which,

again, must be conflict-free, and so we have the contradiction.

Let us prove the partial satisfaction of non-triviality by contra-

diction. From Def. 5.6 and the proof for counterfactual coherence

above, for ⋃︀ℳ
𝑎
⋃︀ = 1, it must be that ∀𝑋 ∈ 𝑃𝑠 , ⋃︀𝑋 ∩ℳ⋃︀ = 1. However,

from the above assumptions we can see that for some 𝑀𝑖 ∈ ℳ,

where ∄𝑀𝑗 ∈ ℳ ∖ {𝑀𝑖} such that 𝑀𝑗 ≻ℳ 𝑀𝑖 , ∃𝑀𝑘 ∈ ℳ such

that𝑀𝑘(x) = 𝑀𝑖(x),𝑀𝑘(c𝑖) ≠ 𝑀𝑘(x) and𝑀𝑖(c𝑘) ≠ 𝑀𝑖(x). Then,
to avoid a contradiction, it must be that ∃𝛼𝑙 ∈ ℳ ∪ 𝒞 such that

(𝛼𝑙 ,𝑀𝑘) ∈ 𝒜 or (𝛼𝑙 , c𝑘) ∈ 𝒜, and (𝑀𝑖 , 𝛼𝑙), (c𝑖 , 𝛼𝑙) ∉ 𝒜. If 𝛼𝑙 ∈ ℳ,

and thus𝑀𝑙(x) ≠ 𝑀𝑘(x) = 𝑀𝑖(x), then it must be that (𝑀𝑖 ,𝑀𝑙) ∈

𝒜 (a contradiction, by Def. 5.5, since 𝑀𝑖 ⪰ℳ 𝑀𝑙 ). If 𝛼𝑙 ∈ 𝒞 and

𝑀𝑙(x) ≠ 𝑀𝑘(x) = 𝑀𝑖(x), then (𝑀𝑖 ,𝑀𝑙) ∈ 𝒜 (a contradiction by

the same reasoning). Finally, if 𝛼𝑙 ∈ 𝒞 and𝑀𝑙(x) = 𝑀𝑘(x) = 𝑀𝑖(x),
then either: if𝑀𝑖(c𝑙) = 𝑀𝑖(x) or𝑀𝑙(c𝑖) = 𝑀𝑙(x), then (𝑀𝑖 , c𝑙) ∈ 𝒜
(a contradiction); or, otherwise,𝑀𝑙 ∈ 𝑋

′
(which can be checked by

repeating the steps for 𝑀𝑘 , for 𝑀𝑙 instead). Thus ∃𝑋
′
∈ 𝑃𝑠 where

⋃︀𝑋
′
∩ℳ⋃︀ > 1, and we have the contradiction in all cases.

Finally, Example 5.7 provides a counterexample which shows

that majority vote is not satisfied. □

These results contrast with those for augmented and robust

ensembling, as shown in Table 1. Argumentative ensembling avoids

the pitfalls of augmented and robust ensembling by satisfying non-

emptiness, counterfactual validity and counterfactual coherence.

Majority vote is sacrificed in order to achieve this behaviour. In

§6 we will assess the impact of not guaranteeing majority vote on

argumentative ensembling’s accuracy, along with other metrics.

Here, instead, we consider some formal results. For the remainder

of the section, we assume as given an input x, a setℳ of models,

a set 𝒞 of CEs, a model preference ⪯ℳ and a corresponding BAF

∐︀𝒳 ,𝒜,𝒮̃︀ with 𝑃𝑠 the set of all s-preferred sets.

First, we consider the relationship between ensembling methods.

Theorem 5.9. If ∀𝑀𝑖 ,𝑀 𝑗 ∈ ℳ,𝑀𝑖 ≃ℳ 𝑀𝑗 , and ∀𝑀𝑘 ∈ ℳ and
c𝑙 ∈ 𝒞, where 𝑀𝑘(x) = 𝑀𝑙(x), 𝑀𝑘(c𝑙) ≠ 𝑀𝑘(c𝑙), then augmented,
robust and argumentative ensembling are equivalent.

Proof. If ∀𝑀𝑖 ,𝑀 𝑗 ∈ ℳ, 𝑀𝑖 ≃ℳ 𝑀𝑗 , then it can be seen from

Definition 5.5 that (𝑀𝑖 ,𝑀 𝑗), (𝑀𝑗 ,𝑀𝑖) ∈ 𝒜 iff 𝑀𝑖(x) ≠ 𝑀𝑗(x).
Note that, by Definition 4.8, augmented and robust ensembling

are equivalent since ∀𝑀𝑘 ∈ ℳ and c𝑙 ∈ 𝒞, where𝑀𝑘(x) = 𝑀𝑙(x),
𝑀𝑘(c𝑙) ≠ 𝑀𝑘(c𝑙). Also by the assumptions, it can be seen from

Definition 5.5 that ∀𝑀𝑘 ∈ ℳ and ∀c𝑙 ∈ 𝒞, (𝑀𝑘 , c𝑙), (c𝑙 ,𝑀𝑘) ∈ 𝒜 iff

𝑀𝑘(c𝑙) = 𝑀𝑘(x) and𝑀𝑘(x) ≠ 𝑀𝑙(x) due to the assumptions in the

theorem, meaning any attack is reciprocated and all arguments de-

fend themselves. Then, ∀𝑀𝑚,𝑀𝑛 ∈ ℳ such that𝑀𝑚(x) = 𝑀𝑛(x),
(𝑀𝑚,𝑀𝑛) ∉ 𝒜. Thus, 𝑃𝑠 = {{𝑀𝑜 ∈ ℳ, c𝑜 ∈ 𝒞⋃︀𝑀𝑜(x) = 0}, {𝑀𝑝 ∈

ℳ, c𝑝 ∈ 𝒞⋃︀𝑀𝑝(x) = 1}. By Definitions 4.1, 4.8 and 5.6, all forms of

ensembling select from the same two sets of models and CEs in the

same manner and are thus equivalent. □

We also provide a number of theoretical results concerning the

behaviour of argumentative ensembling, first relating to the prefer-

ences. The first result demonstrates how a completely dominant

model wrt the preferences will be present in all s-preferred sets.

Proposition 5.10. If ∃𝑀𝑖 ∈ ℳ such that ∀𝑀𝑗 ∈ ℳ,𝑀𝑖 ≻ℳ 𝑀𝑗 ,
then ∀𝑋 ∈ 𝑃𝑠 ,𝑀𝑖 ∈ 𝑋 .

Proof. If∀𝑀𝑗 ∈ ℳ,𝑀𝑖 ≻ℳ 𝑀𝑗 then, byDefinition 5.5,𝒜(𝑀𝑖) =

𝒜(c𝑖) = ∅ and ∀𝑀𝑗 ∈ ℳ where 𝑀𝑗(x) ≠ 𝑀𝑖(x), 𝑀𝑖 ∈ 𝒜(𝑀𝑗).

Similarly, ∀c𝑘 ∈ 𝒞 where𝑀𝑖(c𝑘) = 𝑀𝑖(x),𝑀𝑖 ∈ 𝒜(c𝑘), and so𝑀𝑖

indirectly attacks 𝑀𝑘 . Then, ∄𝑋 ∈ 𝑃𝑠 such that 𝑀𝑗 ∈ 𝑋 or 𝑀𝑘 ∈ 𝑋

and thus, ∀𝑋 ∈ 𝑃𝑠 ,𝑀𝑖 ∈ 𝑋 . □

We also show how, for any two s-preferred sets, there exists

some trade-off between their models wrt the preferences.

Lemma 5.11. Given two s-preferred sets 𝑋,𝑋 ′ ∈ 𝑃𝑠 , ∄𝑀𝑖 ∈ (𝑋 ∩

ℳ) ∖𝑋
′ such that𝑀𝑖 ≻ℳ 𝑀𝑗 for all𝑀𝑗 ∈ 𝑋

′.

Meanwhile, in the non-strict case, a model which is not outper-

formed by any other model wrt the preferences will be present in

at least one s-preferred set.

Proposition 5.12. If ∃𝑀𝑖 ∈ ℳ such that ∀𝑀𝑗 ∈ ℳ,𝑀𝑖 ⪰ℳ 𝑀𝑗 ,
then ∃𝑋 ∈ 𝑃𝑠 such that𝑀𝑖 ∈ 𝑋 .

Proof. If ∀𝑀𝑗 ∈ ℳ, 𝑀𝑖 ⪰ℳ 𝑀𝑗 then, by Definition 5.5, ∄𝛼𝑘 ∈

𝒜(𝑀𝑖) ∪ 𝒜(c𝑖) such that 𝑀𝑖 ∉ 𝒜(𝛼𝑘) and c𝑖 ∉ 𝒜(𝛼𝑘). Thus, it
must be the case that ∃𝑋 ∈ 𝑃𝑠 such that𝑀𝑖 ∈ 𝑋 . □

Wenow show that if a model is outperformedwrt the preferences

by all other models, then the outperformed model cannot exist in

an s-preferred set unless it is defended by a more preferred model.

Proposition 5.13. For any 𝑀𝑖 ∈ ℳ, if 𝑀𝑗 ≻ℳ 𝑀𝑖 for all 𝑀𝑗 ∈

ℳ ∖ {𝑀𝑖} and ∃𝑋 ∈ 𝑃𝑠 such that 𝑀𝑖 ∈ 𝑋 , then, ∀𝑀𝑘 ∈ ℳ where
𝑀𝑘(x) ≠ 𝑀𝑖(x), ∃𝑀𝑙 ∈ 𝑋 such that𝑀𝑙 ⪰ℳ 𝑀𝑘 .
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Proof. By Definition 5.5, 𝑀𝑘 ∈ 𝒜(𝑀𝑖) and {𝑀𝑚 ∈ ℳ⋃︀𝑀𝑖 ∈

𝒜(𝑀𝑚)∨c𝑖 ∈ 𝒜(𝑀𝑚)} = ∅. Then, given that ∃𝑋 ∈ 𝑃𝑠 such that

𝑀𝑖 ∈𝑋 , we know that, ∀𝑀𝑘 ∈𝒜(𝑀𝑖) ∃𝑀𝑙 ∈𝑋 where𝑀𝑙(x)=𝑀𝑖(x)
and𝑀𝑙 ∈𝒜(𝑀𝑘). Thus, by Definition 5.5,𝑀𝑙 ⪰ℳ 𝑀𝑘 ≻ℳ 𝑀𝑖 . □

We also consider the behaviour of argumentative ensembling

wrt the selected CEs, demonstrating that those from disagreeing

models are guaranteed not to be included in any s-preferred set.

Proposition 5.14. Any s-preferred set𝑋 ∈ 𝑃𝑠 is such that ∄c𝑖 , c𝑗 ∈
𝑋 ∩ 𝒞 where𝑀𝑖(x) ≠ 𝑀𝑗(x).

Proof. Let us prove by contradiction, assuming that∃c𝑖 , c𝑗 ∈ 𝑋∩
𝒞. Counterfactual coherence (Theorem 5.8) requires that𝑀𝑖 ,𝑀 𝑗 ∈ 𝑋 .

However, by Definition 5.5, 𝑀𝑖(x) ≠ 𝑀𝑗(x) requires that 𝑀𝑖 ∈

𝒜(𝑀𝑗) or𝑀𝑗 ∈ 𝒜(𝑀𝑖), and so we have the contradiction. □

Finally, we show that s-preferred sets of corresponding BAFs in

our setting satisfy all the forms of admissibility for BAFs in [12].

Proposition 5.15. Any s-preferred set 𝑋 ∈ 𝑃𝑠 is d-admissible,
s-admissible and c-admissible.

Proof. Trivially, any s-preferred set is s-admissible and thus

also d-admissible (see §3). Then, it can be seen from Definition 5.5

that 𝒮 ⊆ (ℳ × 𝒞) ∪ (𝒞 ×ℳ), 𝑖 = 𝑗 ∀(𝑀𝑖 , c𝑗) ∈ 𝒮 ∩ (ℳ × 𝒞)
and 𝑘 = 𝑙 ∀(c𝑘 ,𝑀𝑙) ∈ 𝒮 ∩ (𝒞 ×ℳ). By counterfactual coherence

(Theorem 5.8), ∀𝑀𝑖 ∈ ℳ and ∀c𝑖 ∈ 𝒞,𝑀𝑖 ∈ 𝑋 iff c𝑖 ∈ 𝑋 . Then, since

𝑃𝑠 contains the sets of 𝒳 which are maximal wrt set-inclusion, any

𝑋
′
∈ 𝑃𝑠 must be closed for 𝒮 and thus c-admissible. □

6 EMPIRICAL EVALUATION
We now examine the effectiveness of our approach using three

real-world datasets. Specifically, we empirically evaluate the extent

to which each of the ensembling methods introduced in §4.2 and §5

satisfy the desirable properties defined in §4.1. We also instantiate

three variations of argumentative ensembling by including two

different types of model properties 𝒫 and demonstrate the useful-

ness of incorporating model preferences into ensembling methods.

Further details are in an extended version of this paper [39].

6.1 Experiment Setup
We apply all ensembling methods on three datasets in the legal and

financial contexts: loan approval (heloc) [28], recidivism prediction

(compas) [40], and credit risk (credit) [34]. Due to neural networks’

sensitivity to randomness at training time, they suffer severely from

MM and are frequently targeted when investigating this research

topic (as discussed in §2). Therefore, even though our method is

model-agnostic, we focus on neural networks for the experiments.

For each dataset, we train-test 150 classifiers with five different

hidden layer sizes using 80% of the dataset (this 80% is train-test

split for training each model; see Appendix A in [39] for dataset

and training details). The 150 neural networks are trained using

different random seeds for parameter initialisation and different

train-test splits (within the train-test 80% of the dataset), forming a

pool of possible models under MM from which we sample multiple

setsℳ of models to which we apply our ensembling methods.

We use the remaining 20% of each dataset as test inputs for the

ensembling methods (limited to 500 inputs test set if larger).

At each run, we randomly sample, from the model pool, setsℳ

with 10, 20 or 30 models, then we feed each input to the models to

receive their predicted labels and generate one CE from each model

using the nearest neighbour CEs approach of [9], and finally apply

the ensembling methods. For each size (10, 20, 30), we perform five

different choices ofℳ, and record the mean and standard deviation

of the results (over the five choices of model sets for each size).

As concerns model preferences, we focus on accuracy of the

trained classifiers over the (20%) test inputs and model structure

simplicity. For the latter, we assign the models, from the most com-

plex to the simplest (depending on the number of neurons in the

hidden layers, see Appendix A in [39]), scores of {0, 0.25, 0.5, 0.75,

1} such that higher values imply simpler models. Note that multiple

models inℳmay have the same simplicity scores as we adopt only

five different model structures to obtain 150 neural networks for

each dataset. Models inℳ may have any (near-optimal) test accu-

racy: in the experiments each such model has a different accuracy.

Evaluation metrics. Each ensembling method is evaluated against

the following metrics: prediction accuracy over the test set (acc.),
average model simplicity in the ensemble (simp.), average size of
models and CEs in the ensemble, measured as percentages of ⋃︀ℳ⋃︀

(size M/C), average validities of ensembled CEs over the ensembled

models (c val.). Also, we report the percentage of test inputs for
which a method fails to produce CEs (fail). The results are averaged

over all the test inputs except for the failure cases. We also report

the average test set accuracies of the models inℳ. Note that the

model agreement property (Property 4.4) is omitted as it is satisfied

by every compared method. To understand how the violation of

the majority vote property affects our method, we measure the

proportion of test inputs for which the predicted label using our

method is the same as that of naive ensembling (mv).
Ensembling Methods. We use augmented and robust ensembling

as baselines. For argumentative ensembling, we use four variations

with different preferences: 𝑆
𝑎
(𝒫=∅), 𝑆

𝑎
-A (𝒫={𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦}), 𝑆

𝑎
-S

(𝒫 = {𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦}) and 𝑆
𝑎
-AS (𝒫 = {𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦}, with

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦≃𝒫 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦). In our implementation of argumentative

ensembling, when ⋃︀𝑋𝑚𝑎𝑥 ⋃︀>1 (Def. 5.6), we return 𝑆
𝑎
, which has the

same prediction label as naive ensembling. We give percentages of

test inputs with ⋃︀𝑋𝑚𝑎𝑥>1⋃︀ in Table 3 in Appendix B in [39].

6.2 Results and Analyses
We report the results for all experiments in Table 2 (the standard

deviations are presented in Tables 4 to 6 in Appendix C in [39]).

Usefulness of preferences.With test accuracy specified as model

preference, 𝑆
𝑎
-A shows the best accuracy in all experiments. This

validates Proposition 5.10, because, assuming that the accuracy for

every model inℳ is different, for 𝑆
𝑎
-A, there exists a model inℳ

that is the most preferred and is included in the ensemble. Similarly,

𝑆
𝑎
-S shows the best simp. scores in all experiments. However, since

simplicity scores are not unique for each model, usually a single

most preferred model does not exist, therefore an optimal simp.

evaluation is not guaranteed. When specifying both properties

as model preferences (𝑆
𝑎
-AS), at least one of the two metrics is

improved compared with 𝑆
𝑎
.

Desirable properties of ensembling methods. For up to 70% of test

inputs, robust ensembling does not find any CEs (𝑆
𝑣
∩ 𝒞 = ∅),
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acc. simp. size M/C c val. (fail) mv acc. simp. size M/C c val. (fail) mv acc. simp. size M/C c val. (fail) mv
heloc compas credit

⋃︀ℳ⋃︀ = 10 .709±.003 .856±.001 .664±.008

𝑆
𝑛

.709 .495 .943/.943 .657 (.00) 1.00 .858 .464 .980/.980 .572 (.00) 1.00 .697 .588 .817/.817 .757 (.00) 1.00

𝑆
𝑣

.709 .495 .943/.309 1.00 (.34) 1.00 .858 .464 .980/.174 1.00 (.51) 1.00 .697 .588 .817/.457 1.00 (.44) 1.00

𝑆
𝑎

.712 .504 .499/.499 1.00 (.00) .983 .859 .463 .369/.369 1.00 (.00) .994 .694 .600 .580/.580 1.00 (.00) .953

𝑆
𝑎-A .726 .485 .357/.357 1.00 (.00) .943 .864 .430 .295/.295 1.00 (.00) .988 .710 .593 .486/.486 1.00 (.00) .825

𝑆
𝑎-S .710 .608 .462/.462 1.00 (.00) .967 .860 .657 .306/.306 1.00 (.00) .987 .689 .626 .565/.565 1.00 (.00) .925

𝑆
𝑎-AS .712 .528 .493/.493 1.00 (.00) .980 .860 .501 .360/.360 1.00 (.00) .994 .696 .607 .578/.578 1.00 (.00) .946

⋃︀ℳ⋃︀ = 20 .710±.003 .855±.001 .663±.004

𝑆
𝑛

.717 .488 .940/.940 .626 (.00) 1.00 .859 .538 .978/.978 .544 (.00) 1.00 .708 .571 .810/.810 .734 (.00) 1.00

𝑆
𝑣

.717 .388 .940/.230 1.00 (.37) 1.00 .859 .538 .978/.111 1.00 (.60) 1.00 .708 .571 .810/.351 1.00 (.62) 1.00

𝑆
𝑎

.716 .466 .460/.460 1.00 (.00) .984 .859 .514 .331/.331 1.00 (.00) .992 .691 .580 .557/.557 1.00 (.00) .961

𝑆
𝑎-A .728 .432 .361/.361 1.00 (.00) .950 .866 .541 .235/.235 1.00 (.00) .982 .709 .586 .481/.481 1.00 (.00) .862

𝑆
𝑎-S .711 .551 .420/.420 1.00 (.00) .966 .857 .609 .304/.304 1.00 (.00) .987 .684 .590 .549/.549 1.00 (.00) .947

𝑆
𝑎-AS .715 .473 .459/.459 1.00 (.00) .984 .859 .555 .324/.324 1.00 (.00) .990 .693 .581 .556/.556 1.00 (.00) .959

⋃︀ℳ⋃︀ = 30 .710±.003 .855±.001 .663±.004

𝑆
𝑛

.718 .512 .940/.940 .620 (.00) 1.00 .859 .527 .976/.976 .530 (.00) 1.00 .710 .540 .807/.807 .727 (.00) 1.00

𝑆
𝑣

.718 .512 .940/.205 1.00 (.41) 1.00 .859 .527 .976/.087 1.00 (.56) 1.00 .710 .540 .807/.311 1.00 (.70) 1.00

𝑆
𝑎

.716 .499 .456/.456 1.00 (.00) .982 .862 .519 .308/.308 1.00 (.00) .990 .683 .549 .551/.551 1.00 (.00) .943

𝑆
𝑎-A .729 .406 .353/.353 1.00 (.00) .946 .865 .532 .225/.225 1.00 (.00) .983 .711 .552 .441/.441 1.00 (.00) .850

𝑆
𝑎-S .712 .518 .445/.445 1.00 (.00) .978 .861 .567 .294/.294 1.00 (.00) .988 .684 .555 .546/.546 1.00 (.00) .940

𝑆
𝑎-AS .716 .500 .456/.456 1.00 (.00) .982 .862 .543 .303/.303 1.00 (.00) .988 .683 .549 .551/.551 1.00 (.00) .944

Table 2: Quantitative evaluations of ensembling methods on three datasets, heloc, compas, and credit. ⋃︀ℳ⋃︀ = {10, 20, 30} stands
for results for different model set sizes, the acc. entries in the rows starting with ⋃︀ℳ⋃︀ are the average single model accuracies.

confirming its violation of non-emptiness. As ⋃︀ℳ⋃︀ increases, 𝑆
𝑣

would require finding CEs which are valid for more models, and the

number of CEs found would drop as shown by the results for the

size C evaluations. In contrast, the remaining methods, including

argumentative ensembling, always find non-empty ensembles, the

sizes of which are also not affected by the model set sizes.

𝑆
𝑛
demonstrates low c Val. scores, showing that, on average, a

CE from a model in the ensemble is only valid for 53.0% to 75.7%

of other agreeing models. Thus, the violation of counterfactual

validity has a significant impact in practice. 𝑆
𝑣
produces valid CEs

over models in the ensemble, but they do not always exist.

For 𝑆
𝑎
, we note the same number of models and CEs in the solu-

tion set and 100% counterfactual validity, confirming the behaviour

predicted by Theorem 5.8. Argumentative ensembling shows model

and CE ensemble sizes of 22.5% (when ⋃︀ℳ⋃︀ = 30) to 58.0% of ⋃︀ℳ⋃︀,

meaning that it is non-trivially more selective than 𝑆
𝑛
and 𝑆

𝑣
, only

accepting the largest set of models with similar reasoning local to

the test input (validated by agreement on CEs as required by coun-

terfactual coherence). This results in comparable test accuracies

as 𝑆
𝑛
and 𝑆

𝑣
with guaranteed CE validity. In fact, mostly, the 𝑆

𝑎
-S

option has the lowest agreement rate with majority vote prediction

(mv), but it is more accurate than the baselines using naive ensem-

bling. When no preference is specified, argumentative ensembling

has higher accuracy than majority vote for heloc when ⋃︀ℳ⋃︀ = 10

and for compas when ⋃︀ℳ⋃︀ = 10, 30. Thus, we do not necessarily

lose accuracy in satisfying properties besides majority vote.

7 CONCLUSIONS AND FUTUREWORK
We have presented a formal study of the problem of providing

recourse under MM. We defined several properties which are desir-

able in methods for solving this problem, highlighting deficiencies

in extending conservatively the standard naive ensembling used

for MM without recourse. We have then introduced argumenta-

tive ensembling, a novel method for providing recourse under MM,

which leverages computational argumentation to incorporate ro-

bustness guarantees and user preferences over models. We show,

by means of a theoretical analysis, that argumentative ensembling

hosts advantages over other methods, notably in non-emptiness of

solutions and validity of CEs, notwithstanding its ability to han-

dle user preferences. This is, however, achieved by sacrificing the

satisfaction of the property of majority vote. Our empirical results,
however, demonstrate that argumentative ensembling always finds

valid CEs without compromising prediction accuracy, and shows

the usefulness of specifying preferences over models.

This paper opens up several interesting directions for future

work. First, it would be interesting to examine whether considering

attacks to or from sets of arguments, rather than single arguments,

as in [20, 25, 30, 50], may help in MM. Further, extended AFs [47]

and value-based AFs [4] may provide useful alternative ways to

account for preferences. We would also like to exploit the explana-

tory potential of argumentation to support explainable ensembling,

e.g. using sub-graphs as in [26, 67]. Moreover, in order to support

experiments with a high number of models (beyond the 30 we

considered), large-scale argumentation solvers would be highly

desirable. Finally, it would be interesting to assess the effect which

MM has on users’ evaluations of CEs.
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